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 5 

Summary: Natural decisions involve two seemingly separable processes: inferring the 6 

relevant task (task-belief) and performing the believed-relevant task. The assumed 7 

separability has led to the traditional practice of studying task-switching and perceptual 8 

decision-making individually. Here, we used a novel paradigm to manipulate macaque 9 

monkeys’ task-belief, and demonstrated inextricable neuronal links between flexible task-10 

belief and perceptual decision-making that substantially impact behavior. We showed that 11 

in animals, but not artificial networks trained to make perceptual decisions under 12 

fluctuating task-belief, stronger task-belief is associated with better perception. 13 

Correspondingly, recordings from neuronal populations in monkey cortical areas 7a and 14 

V1 revealed that stronger task-belief is associated with better discriminability of the 15 

believed-relevant but not the believed-irrelevant feature. Perception also impacts belief 16 

updating: noise fluctuations in V1 help explain how task-belief is updated. Our results 17 

demonstrate that complex tasks and multi-area recordings can reveal fundamentally new 18 

principles of how biology affects behavior in health and disease. 19 

 20 
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Body Text: Humans and animals make countless decisions every day that affect their well-being 21 

or even survival.  In the laboratory, decision-making has typically been studied by observing 22 

behaviors and neuronal activity while subjects perform simple, well-understood sensory-motor 23 

integration tasks (Gold and Shadlen, 2007; Kable and Glimcher, 2009; Uchida, Kepecs and 24 

Mainen, 2006). But real-life decisions usually need to contend with a more important problem 25 

even before making perceptual judgements: inferring the relevant task to solve in a certain situation 26 

(i.e., task-belief). Task-beliefs allow decision-makers to focus on a relevant subset of the huge 27 

amount of information in natural environments, and task-beliefs are flexibly adapted as the 28 

environment evolves (task-switching(Monsell, 2003)). Flexibly adapting task-belief is critical but 29 

difficult: the inability to appropriately respond to changing conditions is a debilitating symptom 30 

of disorders including autism, dementia, and substance abuse (Brady, Gray and Tolliver, 2011; 31 

Thapar et al., 2016; Dickstein et al., 2007). 32 

Typically, task-belief is assumed to be a separate functional module that occurs before, and 33 

independent of, perceptual decision-making. In this view, the task-belief module (possibly 34 

involving parietal, prefrontal, and cingulate cortical areas (Stoet and Snyder, 2009; Buschman et 35 

al., 2012; Kamigaki, Fukushima and Miyashita, 2009; Sarafyazd and Jazayeri, 2019; Bartolo and 36 

Averbeck, 2020)) identifies the relevant task and then the perception module (involving sensory 37 

areas such as visual cortex) performs perceptual judgements on the chosen task (Purcell and Kiani, 38 

2016a; Sarafyazd and Jazayeri, 2019; Mante et al., 2013) (Figure S1A, upper panel). We trained 39 

monkeys on a two-feature discrimination task that allows rhesus monkeys to report both their task-40 

belief, and their perceptual judgment on the relevant feature. By decoding task- and perception-41 

related signals from simultaneously recorded neuronal populations in parietal cortical area 7a and 42 

visual cortical area V1, we demonstrated that: 1) trial-by-trial fluctuations in task-belief strength 43 
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correlate with perceptual performance and the fidelity of task-relevant information encoding in 44 

visual cortex; and 2) neuronal variability in visual cortex, even those unrelated to the visual input, 45 

plays an important role in updating task-belief (Figure S1A, lower panel). These results revealed 46 

a very integrated neuronal system that serves as the common substrate for flexible task-belief and 47 

decision-making. 48 

As neuroscience and cognitive science research start to shift focus from simplified 49 

functions in isolation towards more complex and natural behavior, our work has implications for 50 

methodology, basic science, and clinical translations at the time of this paradigm shift. 1) 51 

Methodologically, our work showcased how dynamic cognitive states (e.g. task-belief) in natural 52 

behavior can be systematically manipulated and measured by large-scale neuronal recording from 53 

multiple brain areas during complex cognitive tasks. 2)  Scientifically, we demonstrated 54 

inextricable links between task-belief and perceptual decisions, which would be neglected if either 55 

process is studied alone. It is therefore wrong to assume that all complex cognitions can be 56 

understood by investigating their components separately. 3) In translational research, a wide 57 

variety of neuropsychiatric disorders lead to malfunctions in task-switching and decision-making. 58 

The neuronal link between the two processes suggests that potential treatments might do well to 59 

target neurotransmitters that mediate communication between brain areas. 60 

 61 

 Perception during task-switching  62 

Task-belief is an internal state that continually changes. Even with experimenters’ best 63 

attempts to keep task-belief constant (with fixed stimuli, explicit instructions, and task statistics), 64 

internal belief states still have uncontrolled fluctuations (Purcell and Kiani, 2016b; Ebitz, Tu and 65 

Hayden, 2020; Cohen and Maunsell, 2011a; Cohen and Maunsell, 2011b), some with effects on 66 
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visual cortical activity and perceptual performance that is supposedly confined to the perception 67 

module (Cohen and Maunsell, 2011a; Cohen and Maunsell, 2011b; Monsell, 2003). These results 68 

suggest that beliefs and perception interact in complex ways. The biggest barrier to understanding 69 

such interactions is estimating task-belief during each decision, which is by definition internal and 70 

continually changing. 71 

To address this challenge, we devised a novel two-feature discrimination task to assess 72 

perception and belief simultaneously. We trained animals to discriminate either the spatial location 73 

or spatial frequency of two Gabor patches presented in series. The animals indicated both the 74 

subjective belief about which feature was task-relevant and the corresponding perceptual judgment 75 

by making a saccade to one of four targets (Figure 1A, upper left panel). They were rewarded only 76 

when both task-belief and perception were correct (Figure 1A, right panel). The relevant feature 77 

was not cued and switched with a low probability from one trial to the next (Figure 1A, lower left 78 

panel). This design provides rich and easy measurements and manipulations of subjects’ behavior 79 

during dynamic belief-based decision-making. Meanwhile, we recorded from groups of neurons 80 

from which we could decode information about both visual features the monkeys discriminated 81 

(in visual cortical area V1) and task-belief (in parietal area 7a(Kamigaki, Fukushima and Miyashita, 82 

2009; Stoet and Snyder, 2004)) (Figure 1B). Together, these measurements provide a unique 83 

window into belief updating and perceptual decision-making on every trial.   84 

After training, the animals successfully discriminated the feature change they believed to be 85 

relevant, and largely ignored the feature believed to be irrelevant (Figure 1C). The animals also 86 

effectively updated their belief according to the evolving task requirements, switching tasks only 87 

a couple of trials after the (uncued) task changes occurred (Figure 1D). The number of trials the 88 
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animals took to notice task changes was close to optimal given their perceptual sensitivity (Figure 89 

1E).  90 

 91 

92 
Figure 1. Behavioral paradigm and electrophysiological recording.  (A) Schematic of 93 
the two-interval, two-feature discrimination task with stochastic task switching. On each 94 
trial, monkeys discriminate the difference in either spatial frequency or spatial location 95 
between two subsequent Gabor stimuli; and are rewarded for correctly reporting the sign of 96 
the change in the relevant feature. The relevant feature is uncued and changes with 2.5% 97 
probability on each trial. The monkeys indicate their perceptual decision and the feature 98 
believed to be relevant by making a saccade to one of four choice targets. (B) Belief-based 99 
decisions could potentially be solved by independent hierarchical modules that compute 100 
belief and perception (black boxes). We simultaneously recorded population activity from 101 
one representative brain region for each module (7a and V1 respectively, blue squares show 102 
approximate implant locations) to test the hypothesis that these modules are non-independent 103 
(red arrow). (C) Psychometric curves showing the monkeys’ perceptual choice proportion 104 
as a function of spatial frequency (left panel) and spatial location (right panel) differences. 105 
The flat curves for the irrelevant feature show that animals successfully ignored irrelevant 106 
visual information. (D) Distribution of number of trials it took the monkeys to adapt to task 107 
changes across experimental sessions (mean 3.1 trials). (E) Distribution of number of trials 108 
the monkey took to adapt to the task change relative to an ideal observer model (see STAR 109 

Spatial
location

Spatial
frequency

200 ms 300~500 ms

Time within a trial
Choose

200 ms 150 ms

Stimulus 1 Delay DelayStimulus 2

SL SLSF
SF: trials with spatial frequency ruleSL: trials with spatial location rule

SLSF

Trials within a session

SF

A B

Large 
SF decreases

Small  

1

Pr
op

or
tio

n 
of

 
pe

rc
ep

tu
al 

ch
oic

es

Small 
SF increases

Large 

0.5

Choices

C Monkey’s switches
 relative to task change

0 >7
Trials in delay

0

200

400

600

800

Nu
m

be
r o

f s
wi

tch
es

D Monkey’s switches 
relative to ideal observer

<-36 64 42 2-2 0 >7
Number of trials later than ideal model

0

200

400

600

800

Nu
m

be
r o

f s
wi

tch
es

E

p < 10-6

Past
experience

Belief module
Believes SL
 is relevant

Perception
module

Visual
 input

Decision

+7a
V1Sp

loc
p
c

B

patial
cation

Spatial
frequencyf

expe

Dynamically 
changing 
task rule ?

Large 
SL left-shifts

Small  

1

Small 
SL right-shifts

Large 

0.5

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 27, 2021. ; https://doi.org/10.1101/2021.04.05.438491doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.05.438491


Methods). Positive values refer to occasions where monkeys were slower than the model; 110 
negative values indicate that the monkeys were accidentally faster (mean 1.5 trials). 111 
 112 

Perception covaries with belief strength 113 

Our behavioral results demonstrate that dynamic task-belief strength affect the accuracy of 114 

perceptual decision-making. By design, the animals’ perceptual choices (as opposed to task 115 

choices) are informed by stimulus information within each trial and should ideally be independent 116 

from trial history. However, across experimental sessions (focusing on subsets of trials with the 117 

same stimulus conditions), the animals had better perceptual performance (i.e., perceptual 118 

accuracy of whichever task the animal chose to perform) after rewarded trials (which reinforced 119 

task-belief) than after unrewarded trials (which would weaken the monkeys’ task-belief) (Figure 120 

2A upper panel, Figure S2A). This association between strong task-belief and improved perception 121 

persisted even when taking task-switch cost and task-set inertia (Alport, Styles and Hsieh, 1994) 122 

into account (Figure S2C-D). Furthermore, perceptual performance was even worse when the 123 

previous unrewarded trial contained stronger perceptual evidence against task-belief, such as a 124 

non-reward following an obvious change in a believed-relevant feature (Figure S2E). 125 

Correspondingly, the monkeys’ perceptual choices were strongly related to V1 activity following 126 

rewarded than unrewarded trials (Figure S2B).  127 

The observation that perceptual performance is different following rewarded than unrewarded 128 

trials is broadly consistent with either of two classes of mechanisms. This behavioral interaction 129 

could be caused by the underlying biology: there could be an interaction between the neurons that 130 

encode task-belief strength and those that encode the relevant or irrelevant visual features. 131 

Alternately, the behavioral could be caused purely by the details of the task structure: the monkey 132 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 27, 2021. ; https://doi.org/10.1101/2021.04.05.438491doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.05.438491


has no way of knowing whether a lack of reward indicates an error in perception, task-belief, or 133 

both. If this ambiguity introduces general uncertainty about the logic of the experiment, all aspects 134 

of the behavior might simply be worse following negative feedback.  135 

To differentiate the two hypotheses, we trained a recurrent neural networks to perform this 136 

task. Like the monkeys, the recurrent neural networks have information about both the visual 137 

stimuli on the current trial and the recent trial history, and need to infer the relationship between 138 

those inputs and the correct behavior. If task-uncertainty induced by negative feedback worsens 139 

behavior, this should affect the model as well as the monkey. If, on the other hand, worse 140 

perception following non-rewards is induced by a neuronal interaction between the biological 141 

mechanisms mediating perception and task-belief, the model may be unaffected. 142 

The behavior of the trained recurrent neural networks bears many similarities to the monkeys’ 143 

behavior. Like the monkeys, the network can distinguish relevant information from irrelevant 144 

information (Figure S3B) and can efficiently detect task changes and adjust behavior accordingly 145 

(Figure S3C).  146 

But unlike the monkeys, the network showed no dependence of perceptual performance on the 147 

reward history (Figure 2A), suggesting that biological interactions cause this dependence in our 148 

monkeys. The difference between monkey and model behavior cannot be explained by the network 149 

having mastered the task better than the monkey: the network model never displayed significant 150 

dependence of perceptual performance on past feedback during any stage of training (Figure 2B). 151 

These results demonstrate that better perceptual performance after rewarded than after unrewarded 152 

trials is not a necessary aspect of performing this task. Instead, they suggest that the difference 153 
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between monkeys and models reflects the biological realities of how brains calculate task-belief 154 

and perception. 155 

We therefore investigated potential neuronal interactions between task-belief strength and the 156 

representation of relevant and irrelevant features in visual cortex in V1. To test this hypothesis on 157 

a trial-by-trial basis, we leveraged the fact that neuronal populations in parietal area 7a encode 158 

task-related information (Stoet and Snyder, 2004; Kamigaki, Fukushima and Miyashita, 2009). 159 

We decoded this continuous measure of the animals’ task-belief on each trial (Figure 2C). 160 

Consistent with the idea that rewards reinforce beliefs, the animals’ task choice was better 161 

classifiable after a rewarded than an unrewarded trial (Figure S1C). Decisions to switch tasks were 162 

associated with a dynamic change in decoded task-belief away from the old task and toward the 163 

new task (Figure 2D).  164 

 165 

 166 

Figure 2. Behavioral and neuronal measures of belief strength.  (A) Comparing 167 
perceptual performance following rewarded trials (abscissa) and unrewarded trials (ordinate) 168 
for monkeys (upper panel) and the recurrent network model (lower panel). Each point 169 
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represents one stimulus condition of an experimental session, and we compute perceptual 170 
performance based on the subjectively chosen task, regardless of whether that task-belief 171 
was correct. Upper panel, the monkeys’ perceptual performance is better following rewarded 172 
trials than unrewarded trials. The distribution lies significantly below the unity line (p<10-6 173 
for both monkeys and both features), showing lower perceptual performances following a 174 
non-rewarded trial than following a rewarded trial, with the same perceptual difficulty. 175 
Lower panel, the perceptual performance of the artificial network does not significantly 176 
depend on feedback history (p>0.05 for both features). (B) The difference between the 177 
monkey and network model is not explained by different extent of training. The upper panel 178 
shows that the loss function decreased during time, indicating the gradual learning process 179 
of the model on the task. In the lower panel, the black line indicates the network model’s 180 
difference between perceptual performance following rewarded and unrewarded trials at 181 
each point of training. The red line indicates the corresponding difference in the monkeys’ 182 
perceptual performance, which always lies outside the 90% confidence interval for the model 183 
(gray shading). (C) In a high dimensional neuronal space expanded by the activity of 7a units 184 
during the delay period, we find the best hyperplane to discriminate the task the animal 185 
performed on the trial. We define our single-trial neuronal measure of belief strength as the 186 
Euclidean distance from 7a population activity on each trial to the hyperplane. (D) Belief 187 
strength is schematized as the distance from a rolling ball to a boundary. for trials leading 188 
up to the animals’ decision to switch tasks, the average belief strength decreased 189 
monotonically, changed sign right at the point the monkey decided to switch tasks and 190 
recovered as the new task-belief was reinforced (histograms in bottom panel). Normalized 191 
activity of task-selective 7a units tracked the same dynamics as decoded belief around task 192 
switches (lines in bottom panel). Error bars indicate standard errors. 193 
 194 

Similarly, we estimated trial-by-trial feature discriminability using V1 population responses in 195 

the corresponding feature encoding dimensions (Figure 3A). As expected, when comparing trials 196 

using the same stimuli (i.e. same difficulty), trials with larger relevant feature discriminability 197 

yield better perceptual performance (Figure S1E-F). For each task-belief and stimulus condition, 198 

we look for potential correlation between belief strength measured from area 7a and perceptual 199 

discriminability measured in V1 (Figure 3B). Despite the fact that the resulting correlation is based 200 

on few trials and only a few dozen neurons across two very weakly connected areas (Markov et 201 

al., 2014), there is a positive correlation between belief and the encoding of the feature that is 202 

believed to be relevant, but not when the feature is believed to be irrelevant (Figure 3C-D). 203 

Together, our results indicate that belief-based decision making is an integrated system rather than 204 
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a separable two-stage computation (first the categorical task-belief, then the corresponding 205 

perceptual decision). 206 

 207 

 208 

Figure 3. Belief and perception are linked on a trial-by-trial basis. (A) Using a procedure 209 
similar to that described in Figure 2B, we define the perceptual discriminability of each 210 
stimulus feature change on each trial as the Euclidean distance from V1 population activity 211 
to the hyperplane that best classifies the stimulus change of that feature (e.g., higher vs. 212 
lower spatial frequency). (B) Trial-by-trial comparison between belief strength (abscissae, 213 
decoded from 7a) and perceptual discriminability (ordinates, decoded from V1) for an 214 
example stimulus/task condition. If belief decisions and perceptual decisions are 215 
implemented by separate functional modules of the brain, then internal fluctuations of the 216 
two systems should have no correlation. (C) The belief- spatial location discriminability 217 
correlation is positive when spatial location is believed to be relevant (histogram and 218 
magenta cumulative distribution curve, p=4×10-6), but not when it is believed to be irrelevant 219 
(cyan cumulative distribution curve, p>0.05). The two distributions are significantly 220 
different (Wilcoxon rank sum test, p=0.014). (D) Similarly, belief- spatial frequency 221 
discriminability is significantly positive when spatial frequency is believed to be relevant 222 
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(p=0.0015) but not when it is believed to be irrelevant (p>0.05). The two distributions are 223 
significantly different (Wilcoxon rank sum test, p=0.03). 224 

 225 

V1 fluctuations affect belief updating 226 

In addition to the trial-by-trial interaction between belief and perception, two pieces of 227 

evidence demonstrate that perception on the previous trial affects how task-belief is updated for 228 

the upcoming trial. First, trial information beyond reward outcome affects how task-belief will be 229 

updated. On average, the monkeys were more likely to switch tasks after they missed rewards on 230 

trials with big changes in the stimulus feature believed to be relevant (Figure S4C). This reliance 231 

of belief updating on vision is captured by our ideal observer model which optimally updates belief 232 

to changes in the environment based on historical reward, stimulus, and choices (see Methods and 233 

Figure S4A). The ideal observer model consistently predicts the animals’ behavior better than an 234 

alternative strategy in which every unrewarded trial affects belief independent of visual and choice 235 

experience (Figure S4B). These results demonstrate that, consistent with findings from studies 236 

with similar task structure (Purcell and Kiani, 2016a; Sarafyazd and Jazayeri, 2019), confidence 237 

in historical choices inform belief updating.  238 

Second, even when trial conditions (stimulus, choice, and reward) were identical, there is a 239 

trial-to-trial relationship between fluctuations in the representation of visual stimuli and belief 240 

updating. We captured uncontrolled fluctuations in perception by fitting estimates of each feature 241 

from V1 (Figure 3A) using logistic regression (Figure 4A, similar to the strategy in (Peixoto et al., 242 

2021)). We used this population neurometric curve to estimate the monkey’s confidence about 243 

each perceptual choice and related that confidence estimate to the animals’ task switching 244 

decisions (Figure 4B). The resulting model predicts the animals’ task switching decisions better 245 

than an alternative model that does not incorporate trial-by-trial variability in V1 (Figure S4E). 246 
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Furthermore, if we shuffle V1 responses among trials with identical trial conditions (Figure 4C), 247 

the model’s switch prediction performance suffers significantly (Figure 4D-E). This difference 248 

likely reflects confidence fluctuations in past visual discrimination, since for identical trial 249 

conditions, the monkeys were more likely to switch tasks after they missed rewards on trials with 250 

larger relevant feature discriminability estimated from V1 (Figure S4D). Together, these results 251 

demonstrate that trial-to-trial fluctuations in perception affect belief updating on the subsequent 252 

trial, even though these fluctuations provide no benefit for estimating the relevant feature.   253 

 254 

Figure 4. Trial to trial variability in visual cortex affects belief updating. (A) Example 255 
neurometric curve showing the ability of a decoder to discriminate spatial frequency changes 256 
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from the population of recorded V1 neurons using logistic regression on the perceptual 257 
discriminability of spatial frequency (as in Figure 3A). (B) Based on perceptual confidence 258 
on each trial (estimated from V1 population activity), a normative model determines whether 259 
the subject should switch tasks given the trial history (see STAR Methods). (C) Based on 260 
the V1 projections to the relevant feature subspace on each trial, we estimate from the 261 
neurometric curve, which represents the probability the monkey’s behavioral choice is 262 
correct (i.e. perceptual confidence, (Hangya, Sanders and Kepecs, 2016)). In the trial-shuffle 263 
analysis, we randomly switch the confidence within trials with the same conditions (dots 264 
with same color).  (D) Model predictions after trial-shuffle, conventions as in (b). (e) Trial-265 
to-trial variability in V1 is related to belief. The model’s ability to predict whether the 266 
monkey would switch tasks is better using the actual than trial-shuffled V1 activity 267 
(p=2×10-4). Each data point here represents an experimental session, and its coordinates 268 
show the sensitivity index (d’) of switch prediction for the model based on original (x-axis) 269 
or trial-shuffled V1 activity (y-axis). 270 
 271 

Discussion 272 

Our findings demonstrate that there is no such thing as a standalone perceptual decision-273 

making process: every aspect of perceptual decision-making is profoundly integrated with the 274 

dynamic belief states that dominate natural behavior. The relationship between task-belief and 275 

perception is bidirectional. 276 

First, we demonstrated that fluctuating task-beliefs affect decisions. Using a combination of 277 

multi-neuron, multi-area physiology, complex but controlled behavior, and hypothesis-driven 278 

dimensionality reduction, we demonstrated that perception and task-belief are intimately 279 

intertwined such that weak task-beliefs are associated with poor perception of task-relevant 280 

information. This suggests that fluctuation in belief strength, instead of reflecting a homogenous 281 

process such as arousal, has specific effects on the believed relevant information only. This task-282 

belief specific modulation may be a critical mechanism that underlie the process that limits 283 

reinforcement learning to the relevant feature (Niv et al., 2015). The specific plasticity mechanism 284 

underlying such flexible modulation remains to be revealed, but it may involve a systematic change 285 

in the correlation structure of V1 caused by feedback from higher brain regions such as 7a (Bondy, 286 
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Haefner and Cumming, 2018). On the other hand, it will also be interesting to determine whether 287 

fluctuations in other types of belief (e.g. those reviewed in (Ma and Jazayeri, 2014)) interact with 288 

decision making in different ways. 289 

Second, we demonstrated that fluctuations in perceptual-decision related neuronal activity 290 

affect belief updating. This aspect has largely been missed by studies of cognitive flexibility that 291 

use unambiguous stimuli(Bartolo and Averbeck, 2020; Botvinick and Braver, 2015). Using 292 

perceptually challenging tasks not only is more realistic, but also offers powerful tools to 293 

investigate, manipulate, and quantitatively understand the specific neuronal process governing 294 

perception and belief updating. Our study demonstrates that incorporating these more natural 295 

behavioral features into well-controlled laboratory studies leads to important new insights. In this 296 

regard, our findings are merely a starting point of a wide range of potential scientific explorations 297 

that will shed light on cognitive flexibility, belief-based decision-making, and learning. 298 

The idea that belief-based decision-making relies on the inextricable link between dynamic 299 

task-beliefs and perception showcased that natural and complex behavior may not be understood 300 

as stacked building blocks of simpler functions. It also opens up exciting avenues for translational 301 

therapies that address deficits in flexible decision-making associated with neuropsychiatric 302 

disorders. For instance, our results imply that cognitive flexibility is mediated by interactions 303 

between neural populations responsible for perception and belief. As such, therapies that affect 304 

communication between brain areas (e.g. by affecting neurotransmitters like dopamine(Botvinick 305 

and Braver, 2015; Mueller et al., 2017)) have the potential to improve cognitive flexibility in health 306 

and disease. Indeed, stimulants that affect the dopamine system like methylphenidate or 307 

amphetamines can change focus and flexibility(Bagot and Kaminer, 2014; Mueller et al., 2017). 308 

Going forward, studying the highly integrated belief-based decision-making system will open up 309 
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doors to potential treatments of conditions that affect cognitive flexibility and even solutions for 310 

healthy individuals to become better decision-makers in volatile environments.  311 
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 327 

Materials and Methods 328 
 329 
Experimental subjects 330 
The subjects in our study were two adult male rhesus monkeys (Macaca mulatta, monkey F weighed 12 331 
kilograms, monkey G weighed 9 kilograms), who were both experimentally naïve prior to the current 332 
experiments. All animal procedures were approved by the Institutional Animal Care and Use Committees 333 
of the University of Pittsburgh and Carnegie Mellon University. After we implanted each animal with a 334 
titanium head post, they were trained to perform two-interval, two-feature discrimination with stochastic 335 
rule switching (Figure 1A) (monkey F was trained for 11 months, monkey G for 9 months). We made sure 336 
the animals understood the essential requirements of the task based on their behavior (Figure 1C-D), 337 
before implanting each animal with 6×8 microelectrode arrays (Blackrock Microsystems) in both parietal 338 
cortical area 7a and visual cortical area V1. Each array was connected to a percutaneous connector that 339 
allowed daily electrophysiological recordings. The distance between adjacent electrodes was 400 μm, and 340 
each electrode was 1 mm long. We implanted 7a arrays on the crown of gyrus between intraparietal sulcus 341 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 27, 2021. ; https://doi.org/10.1101/2021.04.05.438491doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.05.438491


and superior temporal sulcus at approximately 11mm lateral to the midline; and V1 arrays posterior to 342 
the lunate sulcus at approximately -13 mm to the intra-aural line and 7 mm lateral to the midline (Figure 343 
1B).  344 
 345 
Behavioral task 346 
To study perceptual decision making under evolving task-beliefs in dynamic environment, we trained the 347 
animals to perform a two-interval, two-feature discrimination task with stochastic task switching. A trial 348 
began when the subjects fixated their gaze on a central dot on the screen and they were required to 349 
maintain fixation as long as the dot remained on the screen, or the trial would be aborted and unrewarded. 350 
A Gabor stimulus was then displayed for 200 ms. After a random delay (300ms to 500ms), a second Gabor 351 
stimulus was displayed for 200 ms with a slightly different spatial location (shifted left or right) and a 352 
slightly different spatial frequency (higher or lower), with independently randomized change amounts in 353 
the two features. The ranges of change amounts are titrated at the beginning of each session so that the 354 
overall perceptual performances of the spatial location task and spatial location task are both 355 
approximately 75%.  Following a subsequent delay of 150ms, the fixation dot disappeared, and the 356 
animals were required to make a saccade to one out of four peripheral targets to indicate both the 357 
inferred relevant feature and the direction of change in that feature. The two cyan targets correspond to 358 
the increase and decrease of spatial frequency when it was believed to be the relevant feature, while the 359 
two magenta targets correspond to the left-shift and right-shift of spatial location. The location of the 360 
array of targets varied across experimental sessions but remained the same within each session. The 361 
monkeys were rewarded only if they correctly reported the direction of change in the relevant feature. 362 
The visual stimuli throughout a trial contain no information about the behavioral relevance of features. 363 
The relevant feature switches on a randomly chosen 2.5% of trials. The monkeys therefore needed to infer 364 
the relevant feature based on their choice and reward history. 365 
 366 
Electrophysiological recording 367 
All visual stimuli were displayed on a linearized CRT monitor (1,024 × 768 pixels, 120-Hz refresh rate) 368 
placed 57 cm from the animal. We monitored eye position using an infrared eye tracker (Eyelink 1000, SR 369 
Research) and used custom software (written in Matlab using the Psychophysics Toolbox(Brainard, 1997) 370 
to present stimuli and monitor behavior. We recorded eye position and pupil diameter (1,000 samples 371 
per s), neuronal responses (30,000 samples per s) and the signal from a photodiode to align neuronal 372 
responses to stimulus presentation times (30,000 samples per s) using hardware from Ripple. 373 
 374 
We recorded neuronal activity from Utah arrays during daily experimental sessions for several months in 375 
each animal (89 sessions from monkey F and 68 sessions from monkey G). We set the threshold for each 376 
channel at three times the standard deviation and used threshold crossings as the activity on that unit. 377 
We positioned the stimuli to maximize the overlap between potential stimulus locations and the joint 378 
receptive fields of V1 units, as determined using separate data collected while the monkeys fixated and 379 
Gabor stimuli were flashed across a range of retinal positions. The stimulus locations did not overlap with 380 
the receptive field of any 7a unit, and we confirmed that our 7a units did not have stimulus feature 381 
selective responses (Figure S1B). 382 
 383 
We included experimental sessions if they contained at least 480 completed trials (where monkeys 384 
successfully maintained fixation until they indicated their choice). We analyzed the activity of area 7a units 385 
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during the first 300ms after the offset of the first stimulus, when there is no Gabor stimulus on the screen; 386 
and the activity of area V1 units during stimulus display periods, shifted with 34 ms visual latency. Units 387 
from area 7a were included if their average activity during the delay period was at least 5 sp/s. Units from 388 
V1 were included in the analyses if their average stimulus response was 1) at least 25% larger than baseline 389 
activity, measured 100ms before stimulus onset, and 2) larger than 5 sp/s. These procedures resulted in 390 
89 sessions from Monkey F and 68 sessions from Monkey G; average 53 7a units, 46 V1 units, and 1053 391 
completed trials per session.  392 
Recurrent Neural Network 393 
We trained recurrent neural networks to perform the two-interval, two-feature discrimination task with 394 
stochastic task switching. Similar to the monkeys, the network model was trained to infer the relevant 395 
feature and make the correct perceptual discrimination based on the implicit task rule. The training and 396 
testing of the neural network were implemented with custom code based on the open source package 397 
PsychRNN (Ehrlich et al., 2021) and Tensorflow (Abadi et al., 2016). The model consists of 100 units with 398 
all-to-all recurrent connections, without any a priori constraints on the connection weights. All results are 399 
qualitatively consistent with network sizes of 50 or 200 units.  400 
 401 
To produce a choice on each iteration, the recurrent neural network receives input from four channels 402 
(Figure S3A): the spatial location change, the spatial frequency change, the recent choice history of the 403 
model, and the reward feedback associated with those choices. The recurrent neural network is 404 
connected to four output units, which correspond to the four saccade targets presented to the monkey. 405 
We take the output unit with the highest activity during choice period as the behavioral choice of the 406 
model. Gaussian noises were added to the stimulus changes so that the overall perceptual performances 407 
of the model would match those of the monkey (Figure S3B). We trained the model using custom code 408 
modified from PsychRNN that allowed the model’s previous choice output to be part of the trial history 409 
input for the following trials. The past trial history information was fed into the network in chronological 410 
order: each trial starts with the stimulus changes followed by (in order) the choice the model made on the 411 
previous iteration, the reward feedback, and finally an intertrial interval before processing information 412 
from the next trial. For the model results shown in Figure 2 and Figure S3, the neural network considered 413 
a trial history of 7 trials before the current trial, which is longer than most of the monkeys’ task-switch 414 
delays. The network behaviors shown in Figure 2 and Supplementary Figure S3 are qualitatively similar if 415 
the history input contained 4 trials or 10 trials before the current trial. 416 
 417 
The loss function is defined as the squared error between the network output and the target output during 418 
the choice period. The target output is 1 on the output unit of the correct choice, and 0 for the other three 419 
output units. We initialized the weight matrix with random connections and used a learning rate of 0.001 420 
during training. 421 
 422 
Population analyses 423 
To obtain a continuous neuronal measure of the animals’ belief state, we analyzed the activity of the 424 
population of 7a neurons during the delay period in a high dimensional space in which the activity of each 425 
unit was one dimension. We used linear discriminant analysis to identify the best hyperplane to 426 
discriminate between 7a population activity on trials where monkeys chose spatial location targets from 427 
trials when they chose spatial frequency targets. We defined the belief strength on each trial as the 428 
Euclidean distance from the 7a population response to the discriminant hyperplane. Similarly, we 429 
obtained a continuous neuronal measure of the discriminability of stimulus change using V1 activity.  430 
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 431 
Statistical tests 432 
All p-values reported in this study are from Wilcoxon signed rank test unless otherwise specified. 433 
 434 
Normative behavioral model 435 
We use a normative model to characterize belief updating of an ideal observer, given the trial history and 436 
the perceptual ability of the monkey (Sarafyazd and Jazayeri, 2019; Purcell and Kiani, 2016a; Glaze et al., 437 
2018). Based on the monkeys’ psychometric curve in an experiment session and the change amount of 438 
the chosen feature in each trial, we estimated the trial-by-trial probability that their perceptual choice 439 
was incorrect. For a non-reward trialed, the odds of likelihoods that the actual task is different from the 440 
monkeys’ subjective belief is given by 441 

𝑝(𝑑𝑖𝑓𝑓|𝑛𝑟, 𝜃, 𝑐)
𝑝(𝑠𝑎𝑚𝑒|𝑛𝑟, 𝜃, 𝑐)

=
𝑝(𝑛𝑟, 𝜃, 𝑐|𝑑𝑖𝑓𝑓) ∙ 𝑝(𝑑𝑖𝑓𝑓)

𝑝(𝑛𝑟, 𝜃, 𝑐)
∙

𝑝(𝑛𝑟, 𝜃, 𝑐)
𝑝(𝑛𝑟, 𝜃, 𝑐|𝑠𝑎𝑚𝑒) ∙ 𝑝(𝑠𝑎𝑚𝑒)

=
𝑝(𝑛𝑟, 𝜃, 𝑐|𝑑𝑖𝑓𝑓)
𝑝(𝑛𝑟, 𝜃, 𝑐|𝑠𝑎𝑚𝑒)

 442 

 443 
where 𝜃 and 𝑐 refer to the stimulus change amount and perceptual choice in the feature the monkeys 444 
believed to be relevant; and 𝑛𝑟  refers to a non-reward trial outcome. We assumed that overall, the 445 
monkeys experienced an equal number of trials where the feature was the same or different from their 446 
current belief (i.e., 𝑝(𝑑𝑖𝑓𝑓) = 𝑝(𝑠𝑎𝑚𝑒) ). The monkeys were never rewarded on trials when their 447 
subjective task-belief was different from the actual task rule, so 𝑝(𝑛𝑟, 𝜃, 𝑐|𝑑𝑖𝑓𝑓) = 1. Meanwhile when 448 
subjective task-belief is consistent with the actual rule, the probability of perceptual error can be simply 449 
derived from the psychometric function associated with that choice: 450 

𝑝(𝑑𝑖𝑓𝑓|𝑛𝑟, 𝜃, 𝑐)
𝑝(𝑠𝑎𝑚𝑒|𝑛𝑟, 𝜃, 𝑐)

=
1

1 − 𝑝(𝜃|𝑐)
 451 

where 𝑝(𝜃|𝑐) is the psychometric function associated with the perceptual choice 𝑐 (Figure 1C). In Figure 452 
4, the psychometric function is replaced with the neurometric function (Figure 4A, also see Population 453 
analyses section). 454 
 455 
For 𝑛 consecutive non-reward trials, the likelihood ratio grows larger as perceptual evidence for a task 456 
switch grows as 457 

1 − ℒ!"#$%

ℒ!"#$%
=6

1
1 − 𝑝(𝜃&|𝑐&)

!

&'(

 458 

where ℒ!  is the likelihood that the task has not changed after 𝑛  consecutive non-rewarded trials 459 
(examples in Figure S4A left panel). Aside from perceptual evidence, the observer presumably also has 460 
prior knowledge about the volatility of the task environment. After 𝑛 consecutive non-reward trials, the 461 
prior probability that the task stays the same with the last rewarded trial is  462 

𝑃𝑟!"#$% = 𝑃𝑟!)("#$% ∙ (1 − ℎ) + (1 − 𝑃𝑟!)("#$%) ∙ ℎ 463 
where ℎ represents the hazard rate of task change at each trial (for an ideal observer, ℎ = 0.025, see 464 
behavioral task section), with 465 

𝑃𝑟*"#$% = 1 − ℎ 466 
Examples of 𝑃𝑟!"#$% under different environment volatility are shown in Figure S4A middle panel. Taking 467 
both perceptual evidence and prior knowledge of environment volatility into account, the model shows 468 
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that an ideal observer should switch tasks if the posterior probability is higher for actual task rule being 469 
different from the subjective task-belief than when they are the same (Figure S4A right panel), i.e.: 470 

𝑠𝑤𝑖𝑡𝑐ℎ	𝑜𝑑𝑑𝑠 = log((1 − 𝑃𝑟!"#$%) ∙ (1 − ℒ!"#$%)) − log(𝑃𝑟!"#$% ∙ ℒ!"#$%).	 471 
𝑤ℎ𝑒𝑛	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒, 𝑠𝑤𝑖𝑡𝑐ℎ	𝑡𝑎𝑠𝑘  472 
 473 
 474 
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Supplemental information: 555 

 556 
Figure S1. Hypotheses and neuronal measures of interaction between task-belief and decision-557 
making. (A)  Illustrative summary of the hypotheses on belief-based decision-making.  Take the task in 558 
Figure 1A as example, intuitive view of natural decision-making consists of two separately studied steps: 559 
1) flexibly shift among tasks in response to evolving environment contingencies, or task-switching; 2) 560 
based on the believed task rule and sensory input, choose the correct behavioral response (perceptual 561 
decision-making). These two hierarchical steps are assumed to have independent biological mechanisms 562 
mediated by different areas in the brain.  However, we found that 1) the supposedly internal 563 
fluctuations of task-belief strength covaries with the fluctuations in the perception of the believed 564 
relevant feature (upper red arrow), and 2) that for apparently identical experiences, the uncontrolled 565 
fluctuations in perception influence how task-belief is adjusted next (lower red arrow). These results 566 
show that task-switching and perceptual decision-making are two cognitive processes inextricably linked 567 
in the brain. (B) Single unit selectivity for stimuli and task. Upper panel, normalized peri-stimulus time 568 
histograms (PSTHs) of the most spatially selective V1 unit (blue) and 7a unit (red) from each session. 569 
Solid lines show responses to the preferred spatial location, and dashed lines show responses to the 570 
non-preferred spatial location. Shaded area indicate s.e.m. Lower two panels show  PSTHs of the most 571 
task selective unit from area 7a (b) and V1 (c) for each session around the monkey’s decision to switch 572 
tasks. The solid lines represent SF-selective units, and the dashed lines represent SL-selective units.  (C) 573 
Task-belief decoded from a neuronal population. Task-belief can be better classified from area 7a 574 
population activity following rewarded than unrewarded trials. The abscissa and ordinate of each point 575 
show the performance of a linear classifier following rewarded and unrewarded trials, respectively. Each 576 
point represents one experimental session. (b) For trials leading up to the animals’ decision to switch 577 
from spatial location task to spatial frequency task, the normalized activity of spatial location task-578 
selective neurons decreases while those of spatial frequency task-selective neurons increases.  Error 579 
bars indicate standard error. (D) Fluctuations in V1 reflect fluctuations in perceptual accuracy. Left 580 
panel: we divide trials from the same stimulus condition according to the neuronal distance between 581 
the V1 population response to the feature discriminant hyperplane. Right panel: distribution of 582 
differences in perceptual performance between longer and shorter distance trials across conditions. The 583 
overall positive mean of the distribution shows that for the same stimulus difficulty, trials with better 584 
relevant-feature discriminability have higher perceptual performance. 585 
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 587 

 588 
Figure S2. Task uncertainty is associated with worse perceptual decisions, independent of task-set 589 
inertia or task switching costs.  (A) Psychometric curves for trials in which the monkey chose to perform 590 
a spatial location discrimination in one example session as a function of reward history. The 591 
psychometric curves (proportion rightward choices as a function of size and sign of the shift) are flatter 592 
(less accurate) with increasing consecutively-unrewarded trials, which correspond to more task 593 
uncertainty. (B) The abscissa and ordinate of each point represents performance decoding the animals’ 594 
perceptual choices following rewarded and unrewarded trials in each experimental session. The animals’ 595 
perceptual choices are significantly better decodable from V1 activity when task belief is certain (after 596 
reward) than when it is uncertain (after missing a reward). (C) If the perceptual performance decrement 597 
following non-rewards (as in Figure 2A) were caused by task-set inertia or task switching costs, the effect 598 
would disappear when subjects were fully adapted or committed to a task. Cyan and magenta curves 599 
show the difference between perceptual performance following rewards and non-rewards as a function 600 
of the number of trials after each task switch that were excluded. Error bars indicate s.e.m. As the 601 
subject adapts to a chosen task, the performance difference asymptotes at a significant non-zero value, 602 
instead of disappearing. (D) The perceptual performance decrement persists even when we exclude 603 
trials following a task switch but before the first reward after the task switch (which confirms the 604 
subjects’ choice of task), leaving trials where the subjects are committed to a task. Perceptual 605 
performance following a reward (abscissae) remains significantly higher than following a non-reward 606 
(ordinates). (E) Perceptual performance is worse following obvious but unrewarded changes in a visual 607 
feature. Unrewarded trials with larger believed-relevant feature changes indicate more strongly that the 608 
current task-belief is wrong, thus predicting an overall weaker task-belief in the next trial. 609 
Correspondingly, we see significantly worse perceptual performance following perceptually-easy yet 610 
unrewarded trials (overall negative mean of the distribution).  611 
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 612 
 613 

Figure S3. Recurrent neural network trained to perform two-feature discrimination task with 614 
stochastic rule-switching. (A) Schematic of the inputs and outputs of the network. The network receives 615 
sequential inputs containing information about stimulus changes, past model choices, and choice feedback 616 
(reward history) over the course of the last several trials. Like the monkey, the network model is trained to 617 
infer the implicit task rule from recent history and make corresponding decisions. (B) Similar to the 618 
monkeys’ behavior in Figure 1C, the choices of a trained network are informed by the believed relevant 619 
feature information, while independent of the believed irrelevant feature information. Conventions as in 620 
Figure 1C. (C) Like the monkeys, the network learned to adapt to changes in task demands. Left panel 621 
shows the distribution of number of trials it took the network to adapt to task changes across experimental 622 
sessions. Middle panel shows the distribution of number of trials the network took to adapt to the task 623 
change relative to the monkey. Overall, the network is more efficient than the monkey at task-switching.  624 
Right panel shows the distribution of number of trials the network took to adapt to the task change relative 625 
to the ideal observer model (see Star Methods). Overall, the network’s task-switching behavior is close to 626 
but slightly trails behind the ideal observer model’s prediction.  627 
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 630 
Figure S4. . Fluctuations in perception informs task-belief update in the future. (A) A normative model 631 
predicts task switching behavior. Left panel: the likelihood (y axis), which is defined as the probability 632 
that the task has remained the same, decreases with the number of consecutive unrewarded trials (x 633 
axis) for each perceptual certainty (colored lines). The rate of decay is slower for lower perceptual 634 
confidence. Middle Panel: the prior probability (y axis) describes, according to the monkey’s prior 635 
knowledge of the environment volatility, the probability that two trials that are n trials apart (x axis) 636 
have the same task rule. Two trials are more likely to have the same task when the average block is 637 
longer. The average block length in the current dataset is 40. Right Panel: Combining the likelihood and 638 
prior, the model predicts a task switch when the posterior probability of switch becomes larger than 639 
that of stay. (B) An alternative to the ideal observer model (y-axis) is one in which the observer 640 
disregards all trial information and switches tasks after a fixed number of consecutive non-rewards 641 
(fixed non-reward model, x-axis). For almost all the sessions, the ideal observer model produce higher 642 
switch-predicting sensitivity (d’) than the fixed non-reward model. (C) Proportion of each trial type that 643 
precedes a switch from the spatial location task to the spatial frequency task. Big fonts in the legend 644 
indicate large changes in the corresponding visual feature. Monkeys are more likely to switch from SL to 645 
SF tasks when there is a big SL change and yet they did not get a reward. Switches from SF to SL are 646 
qualitatively similar. (D) Noise fluctuations in V1 affects task-belief update. Left panel: we divide trials 647 
from the same condition (stimuli, choice, feedback) according to the neuronal distance between the V1 648 
population response to the feature discriminant hyperplane. Right panel: Distribution of differences in 649 
switch rate on the trial following longer or shorter distance unrewarded trials across conditions, where 650 
trials in each condition have identical stimuli, chosen target, and reward (all unrewarded). The overall 651 
positive distribution shows that for the same stimuli and choice, unrewarded trials with better relevant-652 
feature discriminability are more likely to be followed by a task switch. This is expected if fluctuations in 653 
V1 reflect fluctuations in perceptual confidence. (E) A model that incorporates V1 response variability 654 
can better explain switching behavior. The model using the original V1 population response each trial 655 
(V1-confidence, x-axis) consistently outperforms the model using the averaged V1 population response 656 
for all trial within the same condition (same stimulus, choice, and reward outcome; mean V1-657 
confidence, y-axis) for monkey G (circles) and monkey F (triangles). The abscissa and ordinate represent 658 
the sensitivity (d’) of switch predictions using the two models for each experimental session. 659 
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