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Abstract 
Neuronal population responses to sensory stimuli are remarkably flexible. The responses of 
neurons in visual cortex depend on stimulus properties (e.g. contrast), processes that affect all 
stages of visual processing (e.g. adaptation), and cognitive processes (e.g attention or task 
switching). The effects of all of these processes on trial-averaged responses of individual 
neurons are well-described by divisive normalization, in which responses are scaled by the total 
stimulus drive. Normalization describes how a staggering variety of sensory, cognitive, and 
motor processes affect individual neurons (1), but whether different normalization processes 
could be mediated by the same mechanism remains poorly understood. We and others recently 
showed that attention has low rank effects on the covariability of populations of neurons in 
visual area V4 (2-4), which strongly constrains mechanistic models mechanism (2). We 
hypothesized that measuring changes in population covariability associated with other 
normalization processes could clarify whether they might share a mechanism. Our experimental 
design included measurements in multiple visual areas using four normalization processes. We 
found that contrast, adaptation, attention, and task switching affect the responses of populations 
of neurons in primate visual cortex in a similarly low rank way. These results suggest that a 
given circuit uses a common mechanism to perform many forms of normalization and likely 
reflect a general principle that applies to a wide range of brain areas and sensory, cognitive, or 
motor processes. 
 
Introduction 
Understanding the biological basis of a neural computation can clarify the cognitive processes 
by which our brains convert information about the sensory world into action. Divisive 
normalization, in which the responses of individual neurons are divisively scaled by the mean 
drive to the population, is a simple computation that explains a wide variety of sensory, 
cognitive, and motor processes. In the visual system, normalization accounts for the modulation 
involving changes to the visual stimulus (e.g. stimulus contrast or surround suppression; (1, 5-
12), modulation originating from the earliest stages of visual processing in the retina (e.g. 
adaptation; (1, 13-16), and modulation originating from cognitive processes internal to the 
nervous system (e.g. attention, task switching, learning, task difficulty, or multisensory 
integration (17-28).  
 
The existence of normalization in multiple species, brain areas, and functional processes led to 
the appealing hypothesis that these processes share a common underlying mechanism (1). 
However, the normalization equation is not a mechanistic model, and the divisive scaling of trial-
averaged responses is consistent with many models.  
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In contrast, neuronal population responses can be used to constrain models. We showed 
recently that measuring how trial-to-trial response variability is shared across a neuronal 
population and how that covariability depends on sensory or cognitive processes provides 
strong constraints on a model of visual cortex. We and others have shown that covariability of 
firing rates in visual cortex is typically low rank (2-4, 29-35). This means that shared variability is 
well-described as a low-dimensional process that affects neurons with different weights rather 
than higher order interactions between neurons or subpopulations. Furthermore, we showed 
that attention has an even lower rank effect on covariability (approximately rank one), as 
evidenced by the observation that the relationship between noise and signal correlation is 
largely unchanged by attention (36) and by the results of a variety of methods for directly 
measuring the rank attention-related modulation of shared variability (2-4). 
  
Unlike in the data, many typical models of cortical circuits (including balanced excitatory-
inhibitory networks with fast inhibition or with slow inhibition with broad connectivity) produce 
high rank variability (2, 37, 38). We and our collaborators showed recently that requiring the 
models to have realistic timescales and connectivity and constraining parameters by oberved 
effects of attention on covariability places strong constraints on the underlying mechanisms (2, 
39). 
  
We therefore hypothesized that measuring how different normalization-associated processes 
affect population covariability may reveal whether they could plausibly be mediated by the same 
mechanism. We designed our experiment to simultaneously record the effects of multiple 
normalization-associated processes on the same neuronal population and also to evaluate the 
generality of our findings by recording from multiple brain areas using different behavioral tasks. 
We therefore have two data sets. Our first data set consists of simultaneously recorded effects 
of contrast, adaptation, and spatial attention on the responses of small populations of neurons in 
visual area V4. We chose those three processes for three reasons. First, their responses on the 
trial-averaged responses of V4 neurons are well-described by divisive normalization (1). 
Second, they are all known to affect the extent to which trial-to-trial response variability is 
shared between pairs of visual neurons (36, 40-44), which makes it possible to compare their 
effects on the dimensionality of correlated variability.  Third, and most importantly, these three 
modulatory processes represent a strong test of the hypothesis that all processes involving 
normalization involve a common mechanism because they originate at different stages of visual 
processing (contrast is a change in the visual stimulus and affects neuronal responses at all 
processing stages; adaptation affects responses beginning in the retina, and endogenous 
attention more strongly affects later stages of visual processing; Figure 1A). We found that 
although the way each of contrast, adaptation, and attention modulate a given neuron’s mean 
response was uncorrelated with modulation by other factors, all three of these processes affect 
covariability in a low rank way.  
 
Our second data set shows that these low rank effects were not limited to area V4 or to 
processes that have homogeneous effects on large populations: we also found that even when 
different visual features of a stimulus are encoded by the same group of primary visual cortical 
(V1) neurons, changing their behavioral relevance produces low rank effects on neuronal 
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response variability. Together, these data are consistent with the idea that despite the 
differences between contrast, adaptation, attention, and task switching, they affect the 
responses of populations of neurons in primate visual cortex in similar ways. More broadly, they 
suggest that simultaneous recordings from groups of neurons will be key for understanding the 
biological bases of a large range of neuronal computations.  
  
Results 
Simultaneous psychophysical and neurophysiological measurements of contrast, adaptation, 
and attention 
  
To simultaneously measure the effects of contrast, adaptation, and attention on neuronal 
populations, we trained two monkeys (Macaca mulatta) to perform the cued detection task 
illustrated in Figure 1. A trial began when the animal fixated a central spot. While the animal 
waited to detect the onset of a target (see Methods), we presented a series of pairs of static 
gratings across a range of orientations (200 ms duration per stimulus, one stimulus per 
hemifield; Figure 1A). The animal was rewarded for making a saccade to a small red bar that 
could appear at one of 9 possible locations in each hemifield within 450 ms of its onset or for 
maintaining fixation if no bar was presented after 8000 ms. The gratings varied in orientation 
and contrast. The animal was cued in blocks of trials using unanalyzed instruction trials as to 
which hemifield the bar was likely to appear. The attention cue accurately predicted the side that 
the bar would appear on subsequent trials 85% of the time. 
 
The animals’ task performance shows that they respected the attention cue. The animals 
correctly detected a greater proportion of target bar stimuli when they were presented at one of 
the nine locations in the cued (attended) hemifield than one of the nine locations in the uncued 
hemifield. Overall, the animals detected 84% of target bars in the cued hemifield and 78% in the 
uncued hemifield (t-test, p<0.05). 
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Figure 1 – Methods. A. Layout of possible target locations in the cued bar detection task and 
schematic of the detection task. Possible locations are marked with red Xs in top panel. The 
animal maintained fixation while static Gabor stimuli flashed on and off in various configurations. 
The animal was rewarded for directing a saccade to the target stimulus (red bar) within 450ms 
of its appearance. B) Estimates of receptive field centers from an example V4 recording session 
(black circles) during the bar detection task. An estimate of the size of one example unit’s 
receptive field is drawn in gray. Possible target locations are depicted by red Xs. C) Schematic 
of the task-switching task. two subsequent briefly displayed moving Gabors differ both in their 
spatial locations and spatial frequencies, only one of which is behaviorally relevant in each trial. 
The monkey is rewarded, in different trial blocks, to discriminate the change in the relevant 
feature while ignoring the change in the irrelevant feature. D) Estimates of receptive field 
centers from an example V1 recording session (black circles) during the task-switching 
paradigm. An estimate of the size of one example unit’s receptive field is shown by a gray 
ellipse. The stimulus size and range of stimulus locations are shown in red.   
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While the monkeys performed the detection task, we measured the effects of contrast, 
adaptation, and attention on neuronal populations in visual area V4 using chronically implanted 
microelectrode arrays (see Methods; Figure 1B). We recorded single and multiunit activity 
during daily experimental sessions for several weeks in each animal while the animals 
performed the detection task. The most important aspect of our design was to measure 
contrast, adaptation, and attention simultaneously by sorting the same data in different ways. 
We measured contrast by comparing responses to stimuli with high and low contrast, adaptation 
by comparing responses to the first and second presentation of a given orientation, and 
attention by comparing responses when attention was directed toward or away from the grating 
in the same hemifield as the units’ receptive fields. 
 
Task switching: a framework for generalizing our results to different brain areas and tasks 
 
While contrast, adaptation, and adaptation are maximally different in terms of the stage of visual 
processing in which they originate, they have something important in common in the context of 
our experiment. All three processes involve a nonspecific drive to the populations of neurons we 
recorded. We reasoned that if we were ever going to see higher rank changes in population 
response variability, it might be in a situation in which the modulatory process had qualitatively 
different effects on different subsets of neurons.  
 
To test the generality of our results, we recorded the responses of neurons in a different visual 
area (primary visual cortex, or V1) while two different monkeys performed a two-interval, forced 
choice task in which they had to switch which of two features (the spatial location or the spatial 
frequency of the Gabor patch, both of which are encoded in V1) they discriminated. In 
alternating blocks of trials, they indicated whether the spatial frequency of the Gabor stimuli 
increased or decreased or whether the location of the stimuli moved to the left or right (Figure 
1C and 1D). The change amounts were chosen so that the difficulties of the two tasks would be 
comparable (monkey 3 average performance: 75% for spatial location task, 69% for spatial 
frequency task; monkey 4 average performance: 79% for spatial location task, 80% for spatial 
frequency task; no significant pairwise performance differences for the two tasks across 
sessions: p=0.47 for monkey 3, p=0.37 for monkey 4, Wilcoxon signed rank test). The neurons 
we recorded from encode information about both of the two features, presumably in separable 
encoding dimensions. Therefore, by comparing the covariability in trial blocks where different 
encoding dimensions are behaviorally relevant, we can test if higher rank changes are 
necessary for more complicated modulations. 
 
Contrast, adaptation, and attention have diverse and largely separable effects on individual 
units and pairs of units 
 
Consistent with previous results, we found that contrast (8, 10, 45, 46), adaptation (13, 15, 47), 
and spatial attention (48-50) were all associated with changes in the mean firing rates of the V4 
units we recorded from. On average, contrast and attention increased mean rates (Figure 2A; 
mean physiologists’ index comparing high and low contrast = 0.17  and mean index comparing 
attention toward and away from the hemifield containing the unit’s receptive field for attention = 
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0.01, two-tailed Wilcoxon signed rank test,  p= effectively 0 and p=2.3X10-12, respectively), and 
adaptation decreased mean rates (mean index comparing the first and second presentation of 
the same orientation = 0.01, two-tailed Wilcoxon signed rank test, p=3.3X10-11).  
 
Our data suggest that contrast, adaptation, and attention affect the firing rates of individual units 
in a largely separable way (17, 51-59). The extent to which each unit’s mean rate was 
modulated by one of the three processes was weakly, but significantly correlated with 
modulation by the other processes (Figure 2B; Pearson’s correlation coefficients between 
contrast and adaptation indices = 0.13, between contrast and attention indices = -0.1, and 
between adaptation and attention = -0.12, p=7.2X10-20, p=4.4X10-12 and p=9.2X10-19, 
respectively). These results suggest that contrast, adaptation, and attention are associated with 
robust changes to mean rates, but do not provide strong evidence that these changes equally 
target the same subsets of neurons.  
 

 
Figure 2 – Contrast, adaptation and attention affect firing rates in a largely separable manner. A) 
physiologist indices (difference divided by the sum of responses in the two conditions) for each 
unit for contrast, adaptation, and attention. Distribution means indicated by vertical line. 5,328 
units from 10 sessions. B) The effects of contrast, adaptation and attention on individual units 
are weakly related. 
 
Previous studies have demonstrated that a variety of processes modulate the strength of 
covariance or pairwise correlations (often termed rSC; (60) in sensory areas. These include 
anesthesia (34, 61, 62), attention (36, 44, 63), arousal, alertness or task difficulty (64-66), and 
locomotion (67). Consistent with these reports, we found that contrast, adaptation, and attention 
were associated with changes in covariability (36, 40-44); Figure 3A, changes in covariability 
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associated with all three modulatory processes were significantly different from 0; Wilcoxon 
signed rank test, p<0.01).  
 
On average, contrast and adaptation increased covariance (Figure 3A; mean physiologists’ 
index comparing high and low contrast = 2.43 and mean index comparing the first and second 
presentation of the same orientation = 0.19, two-tailed Wilcoxon signed rank test  p=0 and 
p=5.9X10-66, respectively), and attention decreased covariance (mean index comparing 
attention toward and away from the hemifield containing the unit’s receptive field for attention = -
0.30 which is significantly less than 0, two-tailed Wilcoxon signed rank test  p=1.4X10-163). The 
effects of attention, adaptation, and contrast on covariance were not strongly interrelated 
(Figure 3C; the Pearson’s correlation between each unit’s mean change in covariance  with all 
simultaneously recorded units = -0.07 between adaptation and attention,  0.001 between 
contrast and attention, and 0.22 between contrast and adaptation, two-sided t-test, p=1.3X10-13, 
p=0.29 , and  p=3.9X10-128, respectively).  
 

 
Figure 3 – Contrast, adaptation and attention affect correlated variability between pairs of units. 
A. Histograms of covariance changes for contrast, adaptation, and attention. Distribution means 
indicated by vertical line. 20,774 pairs from 10 sessions. B) Covariance changes associated 
with contrast, adaptation and attention on individual units are weakly related. 
 
 
Contrast, adaptation, and attention are all associated with low rank modulation of response 
covariability 
 
We reasoned that if contrast, adaptation, and attention are associated with the same 
computation, they might all affect covariability in similarly low rank ways and along similar 
dimensions of neuronal population activity. We used factor analysis on the z-scored responses 
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to each stimulus to evaluate the rank of the changes in response variability associated with 
each modulatory process. The majority of the population variance is contained in the first few 
modes (the majority of the variance is concentrated in the first eigenmode; Figure 4A).  As in 
previous studies (2-4), we found that attention primarily affects variability in the first eigenmode 
(Figure 4A, compare black and red lines). Consistent with the idea that modulatory processes 
affect the same small number of dimensions, we also found that contrast and adaptation 
affected variability predominantly in this first mode (Figure 4A, compare black and blue lines and 
black and green lines, respectively).  
 
These changes in covariability associated with contrast, adaptation, and attention can be 
completely explained by changes in a single dimension of population response space. The 
changes in pairwise covariance associated with each process are essentially abolished when 
the first eigenmode is removed (2); Figure 4B, mean proportion of total change in covariance for 
V4 = 0.84 (attention), 0.87 (adaptation), and 0.92 (contrast)). The magnitude of this change is 
consistent with a change in a single dimension, given the size of our data set (Figure 4C). In 
principle, if we recorded from much larger populations, we might find modulations that span 
more than a single dimensions. However, these analyses show that while contrast, adaptation, 
and attention are associated with diverse (and different signed) modulations of mean responses 
and pairwise covariability in visual cortex, they all modulate responses in the same, small 
number of dimensions. These results are therefore consistent with the hypothesis that all 
processes associated with normalization affect populations of V4 neurons via similar 
mechanisms. 
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Figure 4 – Contrast, adaptation and attention affect population responses in a small number of 
dimensions. A) eigenvalues (shared variance) of the population covariance matrix 
corresponding to the first five modes calculated using factor analysis (33, 68). B) Changes in 
average covariance associated with contrast, adaptation and attention in V4 or task switching in 
V1 between each unit’s raw (left) or residual (first eigenmode removed) responses and all other 
simultaneously recorded units. Positive numbers mean that covariance was higher for high 
contrast, the first stimulus, the attended stimulus, or the location discrimination task, 
respectively. C) Proportion change in covariance in the first eigenmode as a function of the rank 
of the covariance change in a simulation. We constructed simulated data sets using the mean 
number of units and trials as our real data sets. We constructed changes in covariance of 
different ranks using a procedure described in Methods. We then analyzed the simulated data 
the same way as the real data in Figure 4B and plotted 1-the ratio of the covariance change in 
the residual and raw data. The mean values for each of the data sets in Figure 4B and for the 
V1 data are plotted as horizontal lines in the corresponding color. 
 
Low rank modulation of response variability is not limited to homogeneous processes 
One possibility is that the modulation we observed is low rank because attention, adaptation, 
and contrast have relatively homogeneous effects on the groups of neurons we recorded. For 
example, contrast typically increases the responses of V4 neurons, making it possible that 
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contrast has a low rank, monolithic effect on population responses. A related possibility is that 
trial-to-trial variability in these processes (such as, for example, the animal’s internal attention 
state) is the source of this low rank variability (4, 69). The different sign relationships between 
the strength of the low rank modulation and performance (e.g. good performance is associated 
with low variability for attention but high variability for adaptation and contrast) make it unlikely 
that the explanation is that simple, but measuring trial-to-trial variability in internal states is 
notoriously difficult. 
 
We conducted a strong test of the hypothesis that even complex cognitive processes are 
associated with low rank modulation by measuring modulation of visual cortical activity 
associated with switching between two tasks that are mediated by the same population of 
neurons (Figure 1C). Switching between spatial frequency and location discrimination tasks 
caused both increases and decreases in firing rates (54.2% of units had higher mean rates in 
the spatial frequency than spatial location task) and pairwise covariance (57.0% of units had 
higher mean rSC in the spatial frequency than spatial location task).  
 
We found that task switching affected the covariability of groups of V1 neurons in a low rank 
manner that was very analogous to the effects of attention, adaptation, and contrast on groups 
of V4 neurons (Figure 4B). Like in V4, the covariance change was almost exclusively oriented 
along the primary axis (mean proportion of total change in covariance for V1 (task switching) = 
0.92). These results suggest that the low rank modulation of population covariability we 
observed in V4 is not limited to extrastriate cortex or to processes with relatively homogeneous 
effects on neuronal populations. 
 
Discussion 
Constraints on mechanistic models 
We showed that although attention, adaptation, contrast, and task switching have quantitatively 
and qualitatively different effects on the responses of visual cortical neurons, they all affect 
shared response variability in a low rank way. This observation is important because it places 
strong constraints on models of how modulatory processes affect cortical circuits. 
 
We and our collaborators showed (2) that although many models produce variability whose 
magnitude matches observed pairwise noise correlations, the only model that produces low 
rank fluctuations is one in which inhibition is slower than excitation (which is physiologically 
realistic; 70, 71-73) and in which the connectivity of inhibitory neurons is spatially restricted 
(which is also realistic; 74, 75, 76). In that model, attention (and presumably contrast and 
adaptation, although these were not modeled explicitly) could exert low rank changes in shared 
variability through an input whose effect is to change the balance between excitation and 
inhibition, increasing the activity or influence of inhibitory neurons relative to excitatory ones (2). 
This simple mechanism is a good candidate for a general mechanism mediating a broad class 
of normalization computations in primate visual cortex. 
 
The idea that all normalization processes utilize the same mechanism appears to be 
contradicted by two recent results showing that in mouse visual cortex, normalization primarily 
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involves changes in excitation (77), but in the Drosophila antenna lobe, normalization is 
mediated through changes in inhibition (78). Our model leaves room for both of these 
possibilities: normalization is accomplished by shifting the E/I balance, which could involve 
changes to excitation, inhibition, or both (2, 39). One possibility is that both systems use the 
same broad mechanism (changing E/I balance) but employ different means to change that 
balance. Another possibility is that each circuit (e.g. primate V1 or V4) uses the same 
mechanism for all forms of normalization, but that different systems use different mechanisms. 
 
A recent set of studies suggested a mechanism in which each neuron has a set of inputs that 
perform normalization and that attention and other modulatory processes act through those 
inputs (20-24, 79, 80). This idea is supported by the observation that the extent to which the 
mean responses of individual neurons in visual cortex are modulated by switching attention 
between two stimuli within their receptive fields is highly correlated with the magnitude of 
response suppression associated with placing an additional stimulus in the receptive field (20-
22, 24, 79). However, this strong correlation does not seem to apply to all modulatory 
processes: those same authors showed that modulation by feature attention is not correlated 
with multi-stimulus suppression (27), and we showed that modulation by contrast, adaptation, 
and attention are uncorrelated.  
 
Together, these observations suggest that while all forms of normalization may involve the 
same or similar circuit mechanisms, the involvement of particular neurons likely depends on the 
specific modulatory process or circuit. In some form, the idea that the involvement of specific 
neurons depends on the specific context is necessary to explain the observations that the extent 
of modulation by, for example, feature attention, depends on how closely a neurons’ tuning 
matches the attended stimulus(81-85). 
  
Implications for information coding 
  
A curious consequence of the observation that modulatory processes affect response variability 
in a low rank way is that those modulations should have little to no effect on the stimulus 
information that could be read out of a neuronal population by an optimal decoder. An elegant 
series of theoretical studies showed that shared variability affects the Fisher information 
encoded in a neuronal population only when it is aligned with the dimensions in population 
space that are being read out, and that in large populations, the amount of shared variability that 
is aligned with those dimensions is vanishingly small (86-88). If contrast, adaptation, and 
attention affect only a small number of dimensions in population space, their effects could easily 
be discounted by an optimal decoder.  
 
Why then are attention, adaptation, contrast, and task switching associated with such large 
changes in visual perception? Our results are consistent with only two possibilities: 1) that the 
modulations in visual cortex associated with these processes do not affect perception, or 2) that 
readout is suboptimal in a particular way, such that the first mode (which is associated with the 
changes in shared variability) plays a larger role than it would in an optimal readout scheme. 
While the first possibility has been proposed for attention (in favor of an alternative model in 
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which attention is mediated through changes in the visual information that is communicated to 
downstream areas involved in decision-making; (89-92), it seems implausible for a low level 
process like contrast. Contrast is associated with changes from the earliest stages of visual 
processing, which are then communicated to visual cortex. The idea that contrast-related 
changes in visual cortex are not associated with the concomitant changes in perception seems 
implausible.  
 
On its surface, the second possibility, that visual information is read out suboptimally such that 
low rank changes in variability affect perception, seems equally implausible. Any readout 
mechanism approaching optimality should have access to a much higher dimensional 
representation of visual information, which would minimize the impact of low rank changes in 
response variability. However, we showed recently that in an orientation change detection task, 
monkeys’ choices were much more closely aligned with the axes in V4 population space that 
correspond to shared variability than would be expected if decoding approached optimality (93). 
One possibility is that, either because of a biological constraint or a need to optimize something 
other than performance on a specific task (89), responses oriented along the same dimensions 
that affect modulatory processes carry an outsized influence on perception. Determining the 
validity of these two possibilities will be an important avenue for further work. 
 
Methods 
Subjects and recording methods  
The subjects in our V4 experiments were two adult male rhesus monkeys (Macaca mulatta, 11 
and 9 kilograms). The subjects in our V1 experiments were two different adult male rhesus 
monkeys (Macaca mulatta, 10 and 12 kilograms). All animal procedures were approved by the 
Institutional Animal Care and Use Committees of the University of Pittsburgh and Carnegie 
Mellon University. Before training, we implanted each animal with a titanium head post. Monkey 
1 from the V4 experiment had previously been trained to perform a direction change detection 
task (93) and had a 10x10 microelectrode array (Blackrock Microsystems) implanted in area V4 
in one cerebral hemisphere 4 months prior to the start of training for the current study. After 
completion of the previous study, the monkey was retrained for 4 weeks to perform the bar 
detection task. Monkey 2 for the V4 experiment was trained for 4 months to perform the bar 
detection task before we implanted a 10x10 microelectrode array and began recordings. Both 
V1 monkeys were trained to perform the two discrimination tasks (Figure 1C) before we 
implanted a 6x8 array in area V1. In all cases, the distance between adjacent electrodes was 
400 μm, and each electrode was 1 mm long. We identified areas V1 or V4 using stereotactic 
coordinates and by visually inspection of sulcal landmarks. Each array was connected to a 
percutaneous connector that allowed electrophysiological recordings. 
  
To simultaneously measure the effects of contrast, adaptation, and attention on neuronal 
populations, two monkeys performed the detection task illustrated in Figure 1A. A trial began 
when the animal fixated a central spot. The animal maintained fixation while waiting to detect 
the onset of a small red bar (100 ms stimulus presentation, the bar was .2° thick and ranged 
from .25° to .5° long, with pixel intensities selected at the start of each session to make the task 
sufficiently difficult) presented after a delay period picked from an exponential distribution 
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(minimum time before target onset was 300 ms, tau ranged from 3800 - 4500 ms between 
sessions, max trial time was 8000 ms). While waiting for the target, a series of pairs of static 
gratings (200 ms duration, 100 ms interflash interval) were presented at different orientations; 
one in the joint receptive field of the recorded neurons and the other in the opposite hemifield. 
We manipulated contrast by changing the contrast of the gratings (we used full contrast and low 
contrast stimuli which ranged between 5% and 20% across sessions), adaptation by comparing 
gratings that were presented following a grating of the same or different orientation, and 
attention by cueing the animal in blocks of trials as to which hemifield to expect the red target 
bar to appear (the cue was valid on 85% of trials). The animal was rewarded for making a 
saccade to the red bar within 450 ms of its onset or for maintaining fixation if no bar was 
presented after 8000 ms. 
 
To measure the effects of task switching on populations of V1 neurons, we trained two 
additional monkeys to perform the discrimination tasks illustrated in Figure 1C. The animals 
maintained fixation on a central spot when two subsequent moving Gabor patches with 
randomly drawn spatial locations and spatial frequencies were displayed for 200ms each, 
separated by a variable delay (100~150ms for monkey 3, 300~500ms for monkey 4). Trials 
were grouped in alternating blocks of two behavioral contexts (each block contains 225 trials for 
monkey 3, and 40 trials on average for monkey 4). In the spatial location context, the monkeys 
discriminated the difference in the two stimuli’s locations (left or right shift), while disregarding 
their spatial frequencies; likewise in the spatial frequency context, the monkeys discriminated 
the difference in the two stimuli’s spatial frequencies (increase or decrease), while disregarding 
their spatial locations. The monkeys were trained to make a saccade to corresponding saccade 
targets to report their discrimination decision. 
 
We presented visual stimuli on a calibrated CRT monitor (calibrated to linearize intensity, 1,024 
× 768 pixels, 120-Hz refresh rate) placed 57 cm from the animal. We monitored eye position 
using an infrared eye tracker (Eyelink 1000, SR Research). We used custom software (written in 
Matlab using the Psychophysics Toolbox, ref) to present stimuli and monitor behavior. We 
recorded eye position and pupil diameter (1,000 samples per s), neuronal responses (30,000 
samples per s) and the signal from a photodiode to align neuronal responses to stimulus 
presentation times (10,000 samples per s) using hardware from Ripple. 
 
To measure the effects of modulatory processes on neuronal populations, we recorded single 
and multiunit activity from Utah arrays during daily experimental sessions for several weeks in 
each animal (V4 experiments: 7 sessions in Monkey 1 and 11 sessions in Monkey 2; V1 
experiments: 21 sessions in Monkey 3 and 24 sessions in Monkey 4). Using our recording 
methods, it is nearly impossible to tell whether we recorded from the same single- or multi-unit 
clusters on subsequent days and with the exception of summary figures 2 and 3, our analyses 
focus on within session questions. We spike sorted single units and multi-unit clusters manually 
following the experiment using Plexon's Offline Sorter and we combined single and multiunits 
for all analyses (we use the term “units” to refer to either). For the recordings in V4, we 
positioned the gratings and possible target bar locations such that they fell in the joint receptive 
fields of most units (Figure 1B). We included V4 experimental sessions for neuronal analysis if 
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we recorded from a minimum of ten units simultaneously whose average visual responses to 
the first stimulus shown (which was not used for any subsequent analyses) on all completed 
high contrast trials was at least 25% more than baseline and also at least 5 spikes per second 
greater than baseline (7 sessions from Monkey 1 and 2 sessions from Monkey 2;  average of 63 
responsive units per session and 29 stimulus repetitions of each orientation and condition).  
 
For the analysis of the V4 data, we counted spikes in response to visual stimuli in 200ms bin 
shifted 50ms to account for the visual latencies of V4. Our analyses included all responses after 
the initial stimulus presentation (to remove contrast adaptation; 36) from all trials and were not 
baseline subtracted. We included responses from all completed trials up until 250ms before a 
behavioral event (i.e., the target onset or a fixation break). For each unit (for measures of 
individual unit rates) or pair of units recorded simultaneously but not from the same electrode 
(for covariance), we computed physiologists’ indices (defined as the difference between 
responses in two conditions divided by their sum), covariance, or rSC separately for each unique 
combination of grating orientation, contrast, adaptation, and attention condition and averaged 
the results as described in the figure legends. For the indices in Figure 2A, we compared activity 
using the responses from the attend out, low contrast, adapted condition as the comparison 
point against the responses in the condition where one of those features was changed, for 
contrast, adaptation and attention, respectively. For the scatter plots in Figure 2B, average 
indices for each unit were calculated for all pairs of stimulus conditions and then collapsed 
across conditions. Covariances in Figure 3 were calculated with a similar principle as in Figures 
2A and average covariance changes for each pair of units were calculated within all pairs of 
stimulus conditions (as in Figure 3A) and then collapsed across conditions.  
 
For recordings in V1, the positions of the stimuli are chosen so that they overlap with most of 
the receptive fields of V1 neurons (Figure 1D). We included V1 experimental sessions for 
neuronal analyses if there are at least 50 trials with identical initial stimuli (same location and 
spatial frequency) for each condition. All V1 units were included in the analyses as long as their 
stimulus responses were significantly different from baseline activity. (13 sessions from Monkey 
3 and 20 sessions from Monkey 4;  average of 53 responsive units per session and 153 
repetitions of identical initial stimuli for each condition per session. We included all completed 
trials (where monkeys successfully maintained fixation until they made a saccade and indicated 
their choice). We analyzed the response to the first stimulus display only (i.e. the number of 
spikes within the 200ms of stimulus time window shifted 34 ms for the visual latencies of V1 
(94). 
 
Population analyses 
We used factor analysis to identify the dimensions in population space that account for the most 
shared variance in the population. For the V4 data, we began by z-scoring the spike count 
responses of each neuron to gratings of each orientation in each contrast, adaptation, and 
attention condition. For the V1 data, we z-scored the responses to the each unique stimulus, 
using responses to the first stimulus on each trial (to avoid adaptation effects). We then 
combined the data across all conditions to form a number of neurons x number of trials z-scored 
response matrix which we call X. We used Factor analysis (68, 95) to identify the five 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 9, 2019. ; https://doi.org/10.1101/730978doi: bioRxiv preprint 

https://doi.org/10.1101/730978


dimensions in population space that accounted for the greatest variability in population 
responses. Because we z-scored the responses, these dimensions represent the dimensions of 
greatest covariability in the population. We computed the residual covariance (Figures 4B) after 
subtracting the first mode as Cov(X,X)-L1xL1’ as in (2), where X is the population response 
matrix, Cov(X,X) is the raw covariance matrix, and L1 is the loading matrix when fitting with a 
single factor. We repeated this analysis on multivariate Gaussian distributions with mean 
covariance equal to the means for the two contrast conditions, which was the manipulation 
associated with the largest covariance change in our study (Figure 4C). 
 
We conducted simulations to evaluate the proportion of the covariance change in the first 
dimension that would be measured in our data sets with n units if the true covariance change 
was of rank k. We constructed a covariance matrix S =W*W’+D, where W is a random matrix of 
size kxn and D is a random diagonal matrix with positive elements. We then drew the responses 
of each simulated neuron on each trial from a multivariate Gaussian distribution with covariance 
S and analyzed the results as we did our real data. 
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