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SUMMARY

Trial-to-trial variability is a reflection of the circuitry
and cellular physiology that make up a neuronal
network. A pervasive yet puzzling feature of cortical
circuits is that despite their complex wiring, popula-
tion-wide shared spiking variability is low dimen-
sional. Previous model cortical networks cannot
explain this global variability, and rather assume it
is from external sources. We show that if the spatial
and temporal scales of inhibitory coupling match
known physiology, networks of model spiking neu-
rons internally generate low-dimensional shared
variability that captures population activity recorded
in vivo. Shifting spatial attention into the receptive
field of visual neurons has been shown to differen-
tially modulate shared variability within and between
brain areas. A top-down modulation of inhibitory
neurons in our network provides a parsimonious
mechanism for this attentional modulation. Our
work provides a critical link between observed
cortical circuit structure and realistic shared
neuronal variability and its modulation.

INTRODUCTION

The trial-to-trial variability of neuronal responses gives a critical

window into how the circuit structure connecting neurons deter-

mines brain activity (Kass et al., 2018; Shadlen and Newsome,

1998; Doiron et al., 2016). This idea, combined with the wide-

spread use of population recordings, has prompted deep inter-

est in how variability is distributed over a population (Cohen

and Kohn, 2011; Kohn et al., 2016). There has been a prolifera-

tion of datasets in which the shared variability over a population

is low dimensional (Lin et al., 2015; Rabinowitz et al., 2015; Ecker

et al., 2014; Williamson et al., 2016; Schölvinck et al., 2015),

meaning that neuronal activity waxes and wanes as a group. In

accord, one-dimensional measures such as local field potentials

(Kelly et al., 2010; Middleton et al., 2012) and summed popula-
tion firing rates (Okun et al., 2015; Schölvinck et al., 2015) can

predict a majority of pairwise correlations. Further, the synthesis

of diverse population datasets paints a picture in which low-

dimensional shared variability is a signature of cognitive state,

such as overall arousal, task engagement, and attention (Doiron

et al., 2016; Schmitz and Duncan, 2018), as well as predictive of

behavioral performance (Ni et al., 2018). Such low-dimensional

dynamics portend a theory for the genesis and modulation of

shared population variability in recurrent cortical networks.

Theories of cortical variability can be broadly separated into

two categories: ones in which variability is internally generated

through recurrent network interactions and ones in which

variability originates external to the network. Networks of

spiking neuron models where strong excitation is balanced by

opposing recurrent inhibition produce high single-neuron vari-

ability through internal mechanisms (Shadlen and Newsome,

1998; van Vreeswijk and Sompolinsky, 1996; Amit and Brunel,

1997). However, these networks famously enforce an asynchro-

nous state and as such fail to explain population-wide shared

variability (Renart et al., 2010). This lack of success is contrasted

with the ease of producing arbitrary correlation structure from

external sources. Indeed, many past cortical models assume a

global fluctuation from an external source and accurately cap-

ture the structure of population data (Doiron et al., 2016;

Ponce-Alvarez et al., 2013; Wimmer et al., 2015; Kanashiro

et al., 2017; Hennequin et al., 2018). However, these phenome-

nological models begin with an assumption of low-dimensional

variability from an unobserved source to explain the variability

in a recorded population. In this way, these models are some-

what circular, begging the question of what are the mechanisms

underlying the assumed external variability. Thus, while neuronal

variability has a rich history of study, there remains an impover-

ished mechanistic understanding of the low-dimensional struc-

ture of population-wide variability (Latham, 2016).

Determining whether output variability is internally generated

through network interactions or externally imposed upon a

network is a difficult problem, in which single-area population re-

cordings may preclude any definitive solution. In this study we

consider attention-mediated shifts in population variability ob-

tained from simultaneous recordings of neuron pairs both within

and between visual areas. In particular, attention reduces within

area correlations (area V4; Cohen and Maunsell, 2009) while
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Figure 1. Attentional Modulation of Population Variability within and

between Cortical Areas

(A) Mean spike count correlation rSC per session obtained frommulti-electrode

array recording from V4 was smaller when attention was directed into the

receptive fields of recorded neurons (n = 74 sessions, two-sided Wilcoxon

rank-sum test between attentional states, p = 3.3 3 10�6; reproduced from

Cohen andMaunsell, 2009). Gray lines are individual session comparisons and

the red line is the mean comparison across all sessions (error bars represent

the SEM).

(B) Same as (A) for the mean spike count correlation rSC between V1 units and

MT units per session (n = 32 sessions, paired-sample t test, p = 0.0222; data

reproduced from Ruff and Cohen, 2016a).

(C) Left: the first five largest eigenvalues of the shared component of the spike

count covariance matrix from the V4 data (Cohen and Maunsell, 2009). Green,

unattended; orange, attended; data from n = 72 sessions with 43 ± 15 neurons.

Error bars are SEM. Middle: the vector elements for the first (dominant)

eigenmode. Right: the mean covariance from each session in attended and

unattended states before (raw) and after (residual) subtracting the first

eigenmode (mean ± SD in black). Two-sided Wilcoxon rank-sum test

(attended versus unattended), mean covariance, p = 1.3 3 10�3; residual,

p = 0.75.
simultaneously increasing between area correlations (areas V1

and MT; Ruff and Cohen, 2016a). We show that such differential

correlation modulation is a difficult constraint to satisfy with a

model in which fluctuations are strictly external to the network.

Nevertheless, as discussed above, contemporary recurrent

network models are at a loss to explain population-wide vari-

ability. A central goal of this study is to put forth a new circuit-

based theory of low-dimensional variability in recurrent networks

and explore how plausible modulation schemes can differentially

control within and between area correlations.

The asynchronous solution of classical balanced networks ne-

cessitates that inhibition dynamically tracks and cancels any

correlations stemming from recurrent excitation (Renart et al.,

2010). This requirement has forced theorists to assume that

the time course of inhibitory synapses is faster than that of excit-

atory synapses (Renart et al., 2010; Rosenbaum and Doiron,

2014; Rosenbaum et al., 2017; Monteforte and Wolf, 2012; van

Vreeswijk and Sompolinsky, 1996). However, this is at odds

with recorded synaptic physiology, in which excitatory conduc-

tances rise and decay faster than inhibitory ones (Geiger et al.,
338 Neuron 101, 337–348, January 16, 2019
1997; Salin and Prince, 1996; Xiang et al., 1998; Angulo et al.,

1999). Recently, we have extended the theory of balanced net-

works to include a spatial component to network architecture

(Rosenbaum et al., 2017; Pyle and Rosenbaum, 2017; Rose-

nbaum and Doiron, 2014) and found network solutions in which

firing rate balance and asynchronous dynamics are decoupled

from one another (Rosenbaum et al., 2017). In this study, we

consider multi-area models of spatially distributed balanced net-

works and show that when inhibition has slower kinetics than

excitation in these networks, matching physiology, they inter-

nally produce low-dimensional population-wide variability. Un-

like networks that lack spatial structure, these networks produce

spiking activity that robustly captures the rich diversity of firing

rate and correlation structure of real population recordings.

Further, attention-mediated top-down modulation of inhibitory

neurons in our model provides a parsimonious mechanism that

controls population-wide variability in agreement with the within

and between area experimental results.

There is a long-standing research program aimed at providing

a circuit-based understanding for cortical variability (Shadlen

and Newsome, 1998; van Vreeswijk and Sompolinsky, 1996;

Amit and Brunel, 1997; Rosenbaum et al., 2017; Kass et al.,

2018). Our work is a critical advance through providing a mech-

anistic theory for the genesis, propagation, and modulation of

realistic low-dimensional population-wide shared variability

based on established circuit structure and synaptic physiology.

RESULTS

Attentional Modulation of Shared Variability within and
between Cortical Areas
Multi-electrode recordings from visual area V4 during an orienta-

tion change detection task show that the mean spike count cor-

relation coefficient between neuron pairs in V4 is largely reduced

when the monkeys were cued to pay attention to the neurons’

spatial receptive field (Figure 1A; Cohen and Maunsell, 2009).

Recently, simultaneous recordings from two visual areas, MT

and V1, during a similar attention task (Ruff and Cohen,

2016a), show that in addition to a reduction of mean spike count

correlations between neuron pairs within an area (mean pairwise

attention-related MT correlation decrease was 0.019, Wilcoxon

rank-sum test, p = 0.017; mean pairwise attention-related V1

correlation decrease was 0.008, Wilcoxon rank-sum test, p =

4.9 3 10�6; Ruff and Cohen, 2016a), there is an attention-medi-

ated increase of spike count correlations across areas V1 and

MT (Figure 1B). This differential modulation of within and be-

tween area correlations offers a strong constraint from which

to build circuit models of population-wide variability.

Before we explore population variability in circuit models of

cortex, we first quantify how variability is structured across a re-

corded population. Using dimensionality reduction tools, we

partition the V4 covariance matrix into the shared variability

among the population and the private noise to each neuron (Cun-

ningham and Yu, 2014; Williamson et al., 2016). The eigenvalues

of the shared covariance matrix represent the variance along

each dimension (or latent variable), while the corresponding

eigenvectors represent the projection weights of the latent vari-

ables onto each neuron (STAR Methods). The V4 data show a
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(A) Left: hidden variable model for connected

cortical areas, V1 and MT, where the response

variability ofMTcomes fromboth its upstreamarea

V1 and a hidden source H. Due to the low-

dimensional structure of shared variability in pop-

ulation activity (Figure 1C), we use the mean

population rate (black curves) to represent the

population spiking activity from each area (blue dot

rasters). Right: the hidden source H projects to MT

and V1 with strengths b and k, respectively.

The feedforward projection strength from V1 to

MT is g.

(B) Examples of attentional changes in the variance of MT, D
A�U

VarðMTÞ, and the covariance between MT and V1, D
A�U

CovðMT;V1Þ. We consider combinations of

shared H ðk= 1Þ versus private H ðk= 0Þ and a moderate reduction in hidden variability D
A�U

Var Hð Þ= � 0:5

� �
versus a large reduction D

A�U
Var Hð Þ= � 1

� �
.

Attention-mediated simultaneous decreases in VarðMTÞ and increase in CovðMT;V1Þ occur for private variability with a large reduction in hidden variability

(dark gray). The other combinations cause a shift in the same direction for within and between area variability (light gray). Other model parameters are gU = 0:5,

gA = 1, VarU Hð Þ= 1, b = 1, and VarðV1Þ = 1, independent of attentional state. U, unattended; A, attended. For general analysis, see Methods S1.

(C) The differential modulation of shared variability within and between areas (Figures 1A and 1B) suggests the hidden variable H is internally generated within

area MT and that attention should quench the variance of H substantially.
single dominant eigenmode (Figure 1C, left; for single-session

results, see Figure S1), indicating a primarily one-dimensional

latent structure in the population variability. The projection

weight of the dominant eigenmode onto the individual neurons

is primarily of the same sign (Figure 1C, middle, weights are

dominant positive), meaning that the latent variable causes pos-

itive correlations across the population. Indeed, after subtracting

the first eigenmode themean residual covariances are very small

(Figure 1C, right). Moreover, attention affects population-wide

variability primarily by quenching this dominant eigenmode (Fig-

ure 1C, left, orange versus green) and the attentional modulation

in the dominant eigenmode is highly correlated with the modula-

tion in mean covariance (Figure S1C). The low-dimensional

structure of shared variability in our data is consistent with similar

analysis in other cortices (Williamson et al., 2016; Lin et al., 2015;

Ecker et al., 2014), as well as alternative analysis of the same

V4 data using generalized point process models (Rabinowitz

et al., 2015).

Constraints for Circuit-Based Models of Shared
Variability
Armed with the V4 and V1-MT population analysis, we next

explore the constraints that circuit models must satisfy in order

to capture attentional modulation that differentially modulates

the shared variability within and between cortical areas. Since

the population-wide fluctuations are well described by a single

latent variable that influences all neurons (Figure 1C), we repre-

sent the aggregate population responses with scalar random

variables: MT and V1 (Figure 2A).

To begin, we assume that population responses are linear in

their inputs and that V1 projects to MT with strength g. We sup-

pose a hidden source of variability, H, which projects to MT and

V1 with strength b and k, respectively (Figure 2A); without loss of

generality, we take b = 1. In total, we have MT=gV1+H and

V1 = X0 + kH, where X0 is independent from H. We assume

that attention acts to reduce the variability of the hidden variable,

VarðHÞ, and to increase the coupling strength g.
We first consider how attention affects the covariance be-

tween MT and V1 in our model; our linear system gives the

following:

CovðMT;V1Þ=gVarðV1Þ+ kVarðHÞ: (Equation 1)

For k> 0, an attention-mediated reduction of VarðHÞ acts to

reduce the covariance between V1 and MT. This is at odds

with our cortical recordings (Figure 1B). We explore the case in

which k= 0 to circumnavigate the tension between an increase

in g and a decrease in VarðHÞ. In effect, this assumes that MT

has a source of variability that is private from V1.

With k = 0, the variance of the MT population obeys

VarðMTÞ=g2VarðV1Þ+VarðHÞ: (Equation 2)

The contributions to MT variability from the upstream area V1

and the hidden source H are clear. Further, attention drives

opposing influences on VarðMTÞ through an increase in g being

countered by a decrease in VarðHÞ. However, unlike the case

of CovðMT;V1Þ, we cannot simply choose g to be zero tomitigate

this competition (because V1 would then not drive MT). Indeed, if

the decrease in VarðHÞ is only moderate, then attention will in-

crease both CovðMT;V1Þ and VarðMTÞ (Figure 2B, middle), again

at odds with experiments (Figures 1A and 1B). In total, with an

assumption of H being private to MT ðk = 0Þ, then to have a

reduction in VarðMTÞ combined with an increase in CovðMT;

V1Þ, we require that the attention-mediated suppression in the

variability of H be large (Figure 2B, right). These arguments can

be generalized over a range of parameters (Methods S1;

Figure S2).

In sum, we have exposed three constraints that, if satisfied,

will cause cortical circuit models of population-wide variability

to capture the differential modulation of within and between

area variability.

(1) The shared variability across a neuronal population is low

dimensional.
Neuron 101, 337–348, January 16, 2019 339
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Figure 3. The Spatial and Temporal Scales

of Synaptic Coupling Determine Internally

Generated Variability

(A) Networks of excitatory and inhibitory neuron

models were simulated with either disordered con-

nectivity (Ai and Aiii) or spatially ordered connec-

tivity (Aii and Aiv), and with either fast inhibition

(ti = 1 ms; Ai and Aii) or slow inhibition (ti = 8 ms; Aiii

and Aiv). The integral of inhibitory postsynaptic

current over time is conserved aswe change ti. In all

models the timescale of excitation was te = 5 ms. In

the disordered networks, spike train rasters assume

no particular neuron ordering. In the spatially or-

dered networks, three consecutive spike raster

snapshots are shown with a dot indicating that the

neuron at spatial position ðx; yÞ fired within 1 ms of

the time stamp.

(B) Distributions of firing rates of excitatory neurons

in the disordered (top) and spatially ordered (bot-

tom) models, with faster inhibitory kinetics (purple)

compared to slower inhibitory kinetics (green).

(C) Same as (B) for the distributions of pairwise

correlations among the excitatory population.

(D) Mean correlation among the excitatory popula-

tion as a function of the inhibitory decay time

constant ðtiÞ.
(E) Pairwise correlation as a function of distance

between neuron pairs for spatially ordered models

with slower inhibitory kinetics (green) compared to

faster inhibitory kinetics (purple).
(2) There is a source of attention-mediated population-wide

variability in downstream areas that is private from up-

stream areas.

(3) The attention-mediated suppression of the private vari-

ability needs to be substantial.

The second constraint could be produced by each cortical

population being paired with an external variability source that

projects exclusively to that area. This solution requires strong

assumptions about how the cortex devotes and organizes bio-

logical resources to drive neuronal variability. In contrast, we

explore the more parsimonious hypothesis whereby recurrently

coupled networks produce low-dimensional variability through

internal interactions, and hence variability is private to the popu-

lation by construction (Figure 2C). Further, if the variability is

internally generated, then the third constraint requires a strong

nonlinearity to fully suppress variability in the attended state. In

the next sections, we investigate how a physiologically realistic

network of spiking neuron models can satisfy these three

constraints.
Population-wide Correlations with Slow Inhibition in
Spatially Ordered Networks
Networks of spiking neuron models where strong excitation

is balanced by opposing recurrent inhibition internally

produce high single-neuron variability (Figure 3Ai) with a broad

distribution of firing rates (Figure 3B, top purple curve; van Vrees-
340 Neuron 101, 337–348, January 16, 2019
wijk and Sompolinsky, 1996; Amit and Brunel, 1997; Renart

et al., 2010). However, these networks enforce an asynchronous

solution (Figure 3C, top purple), and as such fail to explain pop-

ulation-wide shared variability (Renart et al., 2010; Williamson

et al., 2016). Typically, balanced networks have disordered con-

nectivity, where connection probability is uniform between all

neuron pairs. This approximation ignores the abundant evidence

that cortical connectivity is spatially ordered with a connection

probability falling off with the physical distance between neuron

pairs (Levy and Reyes, 2012; Horvát et al., 2016; Mariño et al.,

2005). Recently we and others have extended the theory of

balanced networks to include such spatially dependent connec-

tivity (Rosenbaum et al., 2017; Rosenbaum and Doiron, 2014;

Darshan et al., 2018; Pyle and Rosenbaum, 2017). Briefly, we

model a two-dimensional lattice of integrate-and-fire neurons,

meaning neuron locations tile a space with x and y coordinates.

Each neuron receives both feedforward projections from a layer

of external Poisson processes and recurrent projections from

within the network (STAR Methods); the connection probability

of all projections decays like a Gaussian with distance. If the

spatial scale of feedforward inputs is narrower than the scale

of recurrent projections, the asynchronous state no longer exists

(Rosenbaum et al., 2017), giving way to a solution with spatially

structured correlations (Figures 3Aii and 3D, purple; Video S1).

Nevertheless, the mean correlation across all neuron pairs van-

ishes for large network size (Figure 3C, bottom purple curve),

in stark disagreement with a majority of experimental studies
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Figure 4. Top-Down Depolarization of MT Inhibitory Neurons Cap-

tures the Differential Attentional Modulation of Shared Variability

within and across V1 and MT

(A) Thalamus, V1, and MT are modeled in a three-layer hierarchy of spatially

ordered balanced networks. Top-down attentional modulation is modeled as a

static depolarizing current, mI, to MT inhibitory neurons. In both V1 and MT the

recurrent projections are broader than feedforward projections (V1, a
ð2Þ
ffwd =

0:05, a
ð2Þ
rec = 0:1; MT, a

ð3Þ
ffwd = 0:1, a

ð3Þ
rec = 0:2) and recurrent inhibition is slower

than excitation (ti =8 ms, te = 5 ms).

(B) Population averaged firing rate fluctuations fromMT in the unattended state

(mI = 0:2, green) and the attended state (mI = 0:35, orange).

(C) Mean spike count correlation ðrSCÞ of excitatory neuron pairs in MT de-

creases with attentional modulation.

(D) Mean rSC between the excitatory neurons in MT and the excitatory neurons

in V1 increases with attention. Error bars are SEM.

(E) Left: the first five largest eigenvalues of the shared component of the spike

count covariance matrix. Green, unattended; orange, attended; n = 80 ses-

sions with 50 neurons each. Error bars are SEM. Middle: the vector elements

for the first (dominant) eigenmode. Right: the mean covariance from each

session in attended and unattended states before (raw) and after (residual)

subtracting the first eigenmode (mean ± SD in black). Two-sided Wilcoxon

rank-sum test (attended versus unattended), mean covariance, p = 1.3 3

10�21; residual, p = 3.5 3 10�8.
(Cohen and Kohn, 2011; Doiron et al., 2016) as well as with our

motivating population data (Figures 1A and 1B).

Many previous balanced network models assume that the ki-

netics of inhibitory synaptic currents are faster (or at least not

slower) than those of excitatory currents (Renart et al., 2010;

van Vreeswijk and Sompolinsky, 1996; Lim and Goldman,

2014; Amit and Brunel, 1997), including our past work (Rose-
nbaum et al., 2017; Rosenbaum and Doiron, 2014; Pyle and

Rosenbaum, 2017). However, this assumption is at odds with

physiology in which excitatory a-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid (AMPA) receptors have faster kinetics

than those of the inhibitory g-aminobutyric acid (GABAa) recep-

tors (Geiger et al., 1997; Xiang et al., 1998; Salin and Prince,

1996; Angulo et al., 1999). When the timescales of excitatory

and inhibitory synaptic currents match experimental values in

networks with disordered connectivity, the activity becomes

pathologic, with homogeneous firing rates (Figure 3B, top green)

and excessive synchrony (Figures 3Aiii and 3C, top green), as

has been previously remarked (Börgers and Kopell, 2005). This

consequence is likely the ad hoc justification for the faster inhib-

itory kinetics in disordered balanced model networks.

When the spatially ordered model has synaptic kinetics

that match physiology, a population-wide turbulent dynamic

emerges (Figure 3Aiv; Video S2). This dynamic produces a small,

but non-zero, mean pairwise spike count correlation across the

population ðrSC = 0:04Þ, comparable to experiment (Figure 1A,

right). Further, both firing rates and pairwise correlations are

broadly distributed (Figures 3B and 3C, bottom green curves).

Low (but significant) correlation is a robust feature of spatially

ordered networks. This is clear from the gradual rise in mean

correlation with inhibitory timescale for the two-dimensional

spatially ordered network (Figure 3D, solid curve), in contrast

to the rapid rise of correlation to pathologic correlation in the

disordered network (Figure 3D, dashed curve). Further, this

weak sensitivity of correlations on inhibitory timescale is

restricted to networks with two spatial scales (i.e., x and y), since

networks constrained to one spatial dimension (i.e., neurons are

arranged on a ring) also show excessive synchrony when the

inhibitory timescale is large (Figure S3).

Our previous work that studied a spatially ordered model with

fast inhibition identified a signature spatial organization for corre-

lation, namely positive for nearby neuron pairs and negative for

farther away neuron pairs, so that the overall correlation was

small (Rosenbaum et al., 2017). In contrast, the spatial model

with slow inhibition has positive net correlation across all pair

distances (Figure 3E, green)—this is critical for the mean rSC to

be positive. In sum, when realistic spatial synaptic connectivity

is paired with realistic temporal synaptic kinetics in balanced

networks, internally generated population dynamics produce

spiking dynamics whose marginal and pairwise variability

conform to experimental results. The spatially ordered model

with slow inhibition is thus well positioned to satisfy the three

constraints required to match how attention modulates within

and between area correlations.

Attentional Modulation of Low-Dimensional Population-
wide Variability
We model the V1 and MT network by extending our spatially

ordered balanced networks with slow inhibition to include three

layers: a bottom layer of independent Poisson processes

modeling thalamus, and middle and top layers of integrate-

and-fire neurons modeling V1 and MT, respectively (Figure 4A;

STAR Methods). We follow our past work with simplified firing

rate networks (Kanashiro et al., 2017) and model a top-down

attentional signal as an overall static depolarization to inhibitory
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neurons in the MT layer (Figure 4A). This mimics cholinergic

pathways that primarily affect interneurons (Kuchibhotla et al.,

2017; Kim et al., 2016) and are thought to be engaged during

attention (Schmitz and Duncan, 2018). The increased recruit-

ment of inhibition during attention reduces the population-wide

fluctuations in the MT layer (Figure 4B) and decreases pairwise

spike count correlations of MT-MT neuron pairs (Figure 4C),

while simultaneously increasing the correlation of V1-MT neuron

pairs (Figure 4D). Further, neuron pairs with larger firing rate in-

creases also show larger correlation reductions (Figure S4), in

agreement with population recordings during both spatial and

feature attention (Cohen and Maunsell, 2011). Finally, there is a

slight attention-mediated decrease of both the average firing

rates ofMT neurons (�3%) andMT neuron spike count Fano fac-

tor (�20%) (Figure S5). In total, our model and its simple imple-

mentation of attentional modulation capture the main aspects of

the pairwise co-variability in the V1-MTdataset (Figure 1B). How-

ever, it remains to show that ourmodel does this by satisfying the

three constraints identified with our heuristic model (Figure 2).

The first model constraint is that the population-wide vari-

ability must be low dimensional. We analyzed the spike count

covariance matrix constructed from a subsampling of the spike

trains in the third layer of our network model (n = 50 neurons).

The network with slow inhibition produces shared variability

with a clear dominant eigenmode that mimicked many of the

core features observed in the V4 data (Figure 4E compared

with Figure 1C). The projection weights of the dominant mode

are mostly positive (Figure 4E, middle) and the distribution of

mean covariance across sessions is skewed to the positive

side (Figure 4E, right). Removing the first eigenmode also re-

sults in small residual covariance (Figure 4E, right). Further,

the top-down attentional modulation of inhibition also sup-

presses this dominant eigenmode (Figure 4E, right, orange

versus green).

The agreement between model and data breaks down when

inhibitory temporal kinetics and the spatial wiring structure are

changed. When the model has fast inhibition, the shared vari-

ability does not have a dominant eigenmode (Figure S6A), the

raw mean correlation coefficient is near zero (Figure S6C), and

attentional modulation has a negligible effect on population vari-

ability (Figures S6A–S6C, orange versus green). Experimental

measurements of local cortical circuitry show that excitation

and inhibition project on similar spatial scales (Levy and Reyes,

2012; Mariño et al., 2005). Inhibitory projections that are broader

than excitatory produce strong positive and negative correla-

tions within the network, owing to a competitive dynamic across

the network. The resultant population-wide correlations are not

low dimensional (Figure S6F), while still being high in magnitude,

as has been noted in past work from spiking networkswith lateral

inhibition (Keane and Gong, 2015; Pyle and Rosenbaum, 2017;

Williamson et al., 2016). Nonetheless, as in the case with fast

inhibition, the mean correlation coefficient is near zero (Fig-

ure S6H), and attentional modulation has only a negligible effect

(Figures S6F–S6H, orange versus green).

In sum, satisfying our first constraint of shared variability

having low-dimensional structure over the population requires

inhibition that is neither faster nor anatomically broader than

excitation—both features of real cortical circuits (Levy and
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Reyes, 2012; Mariño et al., 2005; Salin and Prince, 1996; Geiger

et al., 1997; Xiang et al., 1998; Angulo et al., 1999). Further, a sim-

ple recruitment of inhibition through top-down drive can restore

stability and quench low-dimensional population variability.

Relating Low-Dimensional Variability to Spatiotemporal
Pattern Formation
To provide intuition about how recurrent circuitry shapes low-

dimensional shared variability, we considered a firing rate model

that incorporates both the spatial architecture and synaptic

dynamics that are central to our spiking model (STAR Methods).

While firing rate models lack a principled connection to spiking

network models, they do produce qualitatively similar dynamics

in recurrent networks and their simplicity makes them amenable

to analysis techniques from dynamical systems theory (Ermentr-

out, 1998).

Solutions in which firing rates are constant over time are inter-

preted as asynchrony within the network, since only dynamical

co-fluctuations in firing rates would model correlated spiking.

We focus on how the stability of the asynchronous firing rate so-

lution depends upon the temporal ðtiÞ and spatial ðsiÞ scales of

inhibition. A firing rate solution is stable if the linearized dynamics

are such that every eigenmode has eigenvalues with strictly

negative real part. Since our network is spatially ordered, the ei-

genmodes are also organized in space, each with their own

distinct wave number (spatial frequency). If the solution loses

stability at a particular eigenmode, then the spatiotemporal dy-

namics of the resulting network firing rates will inherit the spatial

scale of that eigenmode—this process is termed spatiotemporal

pattern formation (Cross and Hohenberg, 1993).

If ti and si are near those of recurrent excitation, then a stable

firing rate solution exists (Figure 5A, gray region; Figure 5B, top

left, black curve with ti = 5ms). Our past work explored activity

within this regime (Rosenbaum et al., 2017). When ti increases

and excitation and inhibition project with the same spatial scale

ðsi = seÞ, firing rate stability is first lost at an eigenmodewith zero

wave number (Figure 5B, left). This creates population dynamics

with a broad spatial pattern, allowing variability to be shared over

the entire network. Simulations of the three-layered spiking

network model in this regime show turbulent dynamics that

extend across the entire network (Figure 5B, right; Video S3).

In contrast to this case, when ti increases yet inhibition projects

lateral to excitation ðsi > seÞ, stability is first lost at a non-zero

wave number (Figure 5C, left). This creates population dynamics

with coherence over a band of higher spatial frequencies, pro-

ducing higher dimensional shared variability, as evident in the

spatially patchy spiking dynamics of the three-layered spiking

network in this regime (Figure 5C, right; Video S4). Thus, the

spatial and temporal scales of inhibition determine in large part

the spatiotemporal patterns of network activity.

In the firing rate network, we can also model attention as a de-

polarization to the inhibitory neurons, as was done in the network

of spiking neuron models. In the firing rate network, attentional

modulation expanded the stable region in the bifurcation dia-

gram (Figure 5A, dashed black line). In other words, attention

increased the domain of firing rate stability. Thus, with ti > te
chosen so that in the unattended state the network was unstable

at a low spatial frequency yet with attention the network was in
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(A) Pairwise covariance of spike counts from our spiking model as a function of

the distance between the neurons.

(B) Same as (A) but for the V4 data. Here the distance is between the electrodes

that recorded the neuron pair.

(C) The distance dependence functions of the first five covariance components

computed from factor analysis of the model spiking activity in the unattended

state. For mode i the product of the eigenmode loading onto a pair of neurons

is plotted as a function of the distance between the neurons. To properly

compare the modes, we scaled each curve by the eigenvalue li for that mode.

(D) Same as (C) but for the V4 data in the unattended state. Shaded regions are

SEM. See Table S2 for the number of pairs at each distance value for the V4

data; for the model we used n = 80 sessions of 500 neurons each.
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Figure 5. Stability Analysis of a Two-Dimensional Firing Rate Model

(A) Bifurcation diagram of a firing rate model as a function of the inhibitory

decay timescale ti and inhibitory projection width si. The excitatory projection

width and time constant are fixed at se = 0:1 and te = 5 ms, respectively. Color

represents the wavenumber with the largest real part of eigenvalue and the

gray region is stable. Top-down modulation of inhibitory neurons modeling

attention expands the stable region (black dashed).

(B) Left: the real part of eigenvalues as a function of wavenumber for increasing

ti when si = se. Right: three consecutive spike raster snapshots of a spiking

neuron network with si = se and slow inhibition (same network as in Figure 4 in

the unattended state).

(C) Same as (B) for si larger than se. Right: spike raster snapshots of a spiking

neuron network with broad inhibitory projections; the excitatory and the

inhibitory projection widths of layer 3 were a
ð3Þ
e = 0:1 and a

ð3Þ
i = 0:2, respec-

tively. Other parameters were the same as in (B).
the stable regime, our model captures the large attention-medi-

ated quenching of population-wide shared variability reported in

the population recordings (Figure 1C) and network of spiking

neuron models (Figure 4E).

In general, dynamical systems can transition through an insta-

bility point by changing any one of many model parameters. This

suggests that tonic drive to inhibitory neurons is not the only
mechanism that can capture the neuronal correlates of atten-

tional modulation. For example, by reducing the strength of

recurrent excitation, providing direct hyperpolarization to excit-

atory neurons, among other cellular and circuit modulations,

our model can mimic the shift in network stability achieved

through top-down drive to inhibition (Figure S7). However,

despite these differing biophysical models of attention, the

mechanisms all share an attention-mediated shift toward inhibi-

tion stabilizing runaway excitation.

Finally, our model predicts that population-wide variability is

due to a dynamical instability that propagates spiking activity

broadly over space. The sparse sampling of spiking activity in

our neuronal recordings (<100 neurons spanning a few square

millimeters of cortical tissue) makes a direct test of this predic-

tion difficult. The pairwise covariance from both our model

simulations (Figure 6A) and V4 data (Figure 6B) decreases with

the distance between neurons in both the attended and unat-

tended states. The large covariance for nearby neurons in the

model is for neuron pairs that are within one spatial footprint of
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the excitatory and inhibitory coupling (distances < 0.25 in Fig-

ure 6A); the 400 mm electrode spacing in the V4 data does not

permit a sampling of small distances between neurons. For the

larger distances the decrease in covariance is gradual, consis-

tent with a previous V4 population dataset (Smith and Sommer,

2013). Further, there is a near spatially uniform reduction of

covariance by attention in both the model and V4 data (Figures

6A and 6B, compare orange and green). While these agreements

between model and data are promising, a simple decay of

covariance with distance can be replicated with many different

models, notably our model with fast (Figure S6D) or broad (Fig-

ure S6I) inhibition.

A more stringent test of our model is to compare how the

spatial dependence of pairwise covariance decomposes over

the low-dimensional latent variable space. The loss of stability

at the zero spatial Fourier mode in our model produces global

fluctuations over the network (Figure 5B). In the factor analysis

of the shared covariance, this is reflected by the dominant eigen-

mode being uniform across neuronal space (Figure 6C, black

curve). In other words, this dominant latent variable projects to

all neurons irrespective of their location and drives global corre-

lations across the network. By contrast, the higher eigenmodes

contain covariance structure that is spatially localized (Figure 6C,

colored curves). This feature is specific to our model, since there

is no spatial invariance of the dominant mode in the spiking

network when inhibition is either fast (Figure S6E) or spatially

broad (Figure S6J). Analysis of the V4 data clearly identifies a

spatial invariance of the dominant eigenmode (Figure 5D, black

curve), validating our model prediction.

Chaotic Population-wide Dynamics Reflect Internally
Generated Variability
The attention-mediated differential modulation of within and be-

tween area correlations (Figure 1) lead us to propose our second

and third model constraints—that shared variability has a sizable

internally generated component and that attention must quench

this variability. The third constraint requires that the mechanisms

that produce internally generated variability sensitively depend

on top-down modulations. The firing rate model captured this

sensitivity through a spatiotemporal pattern-forming transition

in network activity. However, the firing rate model does not inter-

nally produce trial-to-trial variability that can be compared to

experiment, and we thus return to analysis of the network of

spiking neuron models to probe how trial-to-trial variability is

internally generated through recurrent coupling.

To isolate the sources of externally and internally generated

fluctuations in the third layer of our network, we fixed the spike

train realizations from the first layer (thalamic) neurons as well

as the membrane potential states of the second layer (V1) neu-

rons, and only the initial membrane potentials of the third layer

(MT) neurons were randomized across trials (Figure 7A). This

produced deterministic network dynamics when conditioned

on activity from the first two layers, and consequently any trial-

to-trial variability is due to mechanics internal to the third layer.

The spike trains from third layer neurons in both the unat-

tended and attended states have significant trial-to-trial

variability despite the frozen layer one and two inputs. This is

reflective of a well-studied chaotic network dynamic in balanced
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networks in which the spike times from individual neurons are

very sensitive to perturbations that affect the spiking of other

neurons (Monteforte and Wolf, 2012; London et al., 2010). To

investigate how this microscopic (single neuron) variability

possibly manifests as macroscopic population activity, we

considered the trial-to-trial variability of the population-averaged

instantaneous firing rate. While the population firing rate is dy-

namic in the attended state, there is very little variability from trial

to trial (Figure 7B, left; Figure 7D, orange). A consequence of this

low population-wide variability is the faithful tracking of the

spatiotemporal structure of layer two outputs by layer three re-

sponses (Figure 7B, right; Figure 7E, orange). This tracking re-

flects the higher correlation between layer two and three spiking

in the attended state (Figure 4D), and represents the attention-

mediated increase in V1 to MT coupling (g) in our linear model

(Figure 2).

In contrast, in the unattended state there is significant popula-

tion-wide recruited activity. The periods of spiking coherence

across the network are not trial locked and rather contribute to

sizable trial-to-trial variability of population activity (Figure 7C,

left; Figure 7D, green). This degrades the tracking of layer two

outputs (Figure 7C, right; Figure 7E, green) and ultimately lowers

the correlation between layer two and three spiking (Figure 4D).

Taken together, while the network model is chaotic in both the

attended and unattended states, the chaos is population-wide

only in the inhibition-deprived unattended state. Furthermore,

since the population-wide variability is internally generated in

the MT layer, our framework satisfies our second model

constraint of private variability.

The nonlinear pattern-forming dynamics of the spatially

distributed recurrent network impart extreme sensitivity to the

population-wide internally generated variability. Indeed, in our

model the trial-to-trial population rate variability is almost extin-

guished with attention (Figure 7D, right). In our heuristic model

with hidden variable H this amounts to Var Hð Þ reducing drasti-

cally with attention, which is precisely what is needed to account

for the differential modulation of within and between area corre-

lations (compare Figure 2B with Figure 7D, right). Thus, our

model satisfies the third constraint we derived from our hidden

variable model, namely that the shared variability in MT should

be substantially quenched by attention.

DISCUSSION

There is a long-standing research program aimed at understand-

ing how variability is an emergent property of recurrent networks

(van Vreeswijk and Sompolinsky, 1996; Amit and Brunel, 1997;

Monteforte and Wolf, 2012; London et al., 2010; Rosenbaum

et al., 2017; Rosenbaum and Doiron, 2014). However, models

are often restricted to simple networks with disordered connec-

tivity. Consequently, in these networks population-wide activity

is asynchronous, at odds with many experimental findings (Co-

hen and Kohn, 2011; Doiron et al., 2016). A parallel stream

of research focuses on spatiotemporal pattern formation in

neuronal populations, with a rich history in both theoretical

(Ermentrout, 1998) and experimental contexts (Sato et al.,

2012). Yet a majority of these studies consider only trial-

averaged activity, with tacit assumptions about how spiking
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Dynamics Are Quenched by Attention

(A) Schematic of the numerical experiment. The

spike train realizations in layer one and the initial

states of the membrane potential of layer two

neurons are identical across trials, while in each

trial we randomized the initial states of the layer

three neuron’s membrane potentials.

(B) Three representative trials of the layer three

excitatory population rates in the attended state

(left, rows 1–3). Bottom row: difference of the

population rates across 20 trials. Right (rows 1–3):

snapshots of the neuron activity at time point

1,864 ms. Each dot is a spike within 2 ms window

from the neuron at that location. Right bottom: the

synaptic current each layer three neuron receives

from layer two at time 1,864 ms.

(C) Same as (B) for the network in the unattended

state.

(D) Trial-to-trial variance of layer three population

rates as a function of time. Right: mean variance

across time.

(E) The layer three population rate tracks the layer

two population rate better in the attended state.

Both outputs and responses are smoothed with a

200 ms window.
variability emerges (but see Keane and Gong, 2015 and Rose-

nbaum et al., 2017). In this study we combined these modeling

traditions with the goal of circuit-based understanding of the

genesis and modulation of low-dimensional internally generated

shared cortical variability.

Population-wide Variability in Balanced Networks
Our model extends classical work in balanced cortical net-

works (van Vreeswijk and Sompolinsky, 1996; Renart et al.,

2010) to include two well-accepted experimental observa-

tions. First, cortical connectivity has a wiring rule that depends

upon the distance between neuron pairs (Horvát et al., 2016;

Levy and Reyes, 2012). Theoretical studies that model

distance-dependent coupling commonly assume that inhibi-

tion projects more broadly than excitation (Ermentrout,

1998; Compte et al., 2003; Keane and Gong, 2015). However,

measurements of local cortical circuitry show that excita-

tion and inhibition project on similar spatial scales (Levy

and Reyes, 2012; Mariño et al., 2005), and long-range

excitation is known to project more broadly than inhibition
N

(Bosking et al., 1997). Our work shows

that local inhibitory projections are

required for internally generated popu-

lation variability to be low dimensional

(Figure S6F).

The second observation is that inhibi-

tion has temporal kinetics that are

slower than excitation (Salin and Prince,

1996; Geiger et al., 1997; Angulo et al.,

1999; Xiang et al., 1998). Past theoretical

models of recurrent cortical circuits have

assumed that inhibition is not slower
than excitation (Renart et al., 2010; van Vreeswijk and Sompo-

linsky, 1996; Stringer et al., 2016; Lim and Goldman, 2014),

including past work from our group (Rosenbaum et al., 2017;

Rosenbaum and Doiron, 2014; Pyle and Rosenbaum, 2017).

Consequently, these studies could only capture the residual

correlation structure of population recordings once the domi-

nant eigenmode was subtracted (Rosenbaum et al., 2017; Wil-

liamson et al., 2016). When inhibition has kinetics that are

slower than excitation, the asynchronous solution is unstable.

In disordered networks with strong coupling, this causes path-

ologic levels of rhythmic synchrony (Figure 3Aiii), often requiring

sources of external variability that are independent over neu-

rons to tame network activity (Börgers and Kopell, 2005). In

contrast, we have shown that networks with slow inhibition

and neuronal coupling that depend upon two spatial dimen-

sions produce spiking dynamics that are only weakly corre-

lated, with firing rate and correlation values that match experi-

ment (Figures 3Aiv and 4). In total, by including accepted

features of cortical anatomy and physiology, long ignored by

theorists, our model network recapitulates low-dimensional
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population-wide variability to a much larger extent than previ-

ous models.

The above narrative is somewhat revisionist; there are several

well-known theoretical studies in disordered networks in which

one-dimensional population-wide correlations do emerge,

notably in networks where rhythmic (Amit and Brunel, 1997) or

‘‘up-down’’ (Compte et al., 2003; Stringer et al., 2016) dynamics

are prominent. Networks with dense yet disordered connectivity

ensure that all neuron pairs receive some shared inputs from

overlapping presynaptic projections. In such a network, if the

asynchronous state becomes unstable then this shared wiring

will correlate spiking activity across the entire network. In other

words, any shared variability will be one dimensional (scalar)

by construction. In contrast, the ordered connectivity in our

network is such that neuron pairs that are distant from one

another have no directly shared presynaptic connections.

Consequently, when asynchrony is unstable, one-dimensional

population dynamics are not preordained; rather, the spatial

network can support higher dimensional shared variability de-

pending on the temporal and spatial scales of recurrent coupling

(Figures S6 and 5). From the vantage of this model, we discov-

ered the conditions for recurrent architecture and synaptic phys-

iology for low-dimensional shared variability.

Recently, several studies have shown that networks of firing

rate models with a low-rank perturbation of the recurrent con-

nectivity structure can exhibit low-dimensional coherent chaotic

dynamics (Mastrogiuseppe andOstojic, 2018; Landau and Som-

polinsky, 2018). Such a low-rank connectivity effectively embeds

a feedforward loop in the network and thus drives the population

activity in one direction. However, such a low-rank connectivity

requires each neuron projects a component of its activity to

the whole population, a circuit assumption that lacks biological

evidence. In contrast, our network simply incorporates spatially

ordered connectivity, which has been commonly observed in

most cortical areas (Horvát et al., 2016). The recurrent wiring

structure within our network is high-rank due to the distance-

dependent connections; cell pairs that are distant from one

another do not share presynaptic inputs. The low-dimensional

variability in our model emerges from a network instability at

zero spatial Fourier mode that produces activity that propagates

broadly across the network through polysynaptic connections.

Internal versus External Population Variability
Our circuit model assumed that the component of population-

wide variability that is subject to attentional modulation was

internally generated within the network. While our model is a

parsimonious explanation of the data, it does not definitively

excludemechanisms in which variability is inherited from outside

sources. Fluctuations from external sources are an often

assumed and straightforward mechanism for population-wide

spiking variability (Doiron et al., 2016; Hennequin et al., 2018;

Ponce-Alvarez et al., 2013; Wimmer et al., 2015; Kanashiro

et al., 2017; Bondy et al., 2018). For instance, pupil diameter is

an indicator of overall brain state and arousal level, and fluctua-

tions in pupil diameter are correlated with the fluctuations in

cholinergic and noradrenergic projections to sensory cortex (Re-

imer et al., 2016). The reduction of population-wide variability

reported in aroused states and during locomotion is likely a
346 Neuron 101, 337–348, January 16, 2019
reflection of the quenching of these external fluctuations

(McGinley et al., 2015). While it is tempting to extend this idea

to variability modulation in selective attention, there are some

key differences that complicate this interpretation. Whole-brain

state is not changing when attention is directed into or out of

the receptive field of a neuron, and thus the neuronal correlates

of arousal are possibly distinct from those of attention. Further,

the differential modulation of rSC between and within cortical

areas (Figures 1A and 1B) is difficult to explain with just a single

‘‘brain state’’ latent variable (Figure 2A). Rather, we expect that

arousal would reduce both within and between area popula-

tion-wide variability.

Nevertheless, it is popular to associate the variability within a

lower area as inherited from top-down projections (Bondy

et al., 2018; Wimmer et al., 2015). However, cooling experiments

that inactivate top-down projections from visual areas V2 and V3

to area V1 produce only a slight reduction in single V1 neuron

variability (Gómez-Laberge et al., 2016). In contrast, the bot-

tom-up transfer of variability from lower to higher visual areas

can be significant (Gómez-Laberge et al., 2016; Ruff and Cohen,

2016b). Additional multi-area population recordings between

connected brain regions will be needed to probe how correlated

variability flows along bottom-up and top-down pathways.

A second way to change population output variability is to

keep input fluctuations fixed and shift the operating point of

the network through an additional static top-down modulation.

Here ‘‘operating point’’ designates the mean firing rates and

neuronal gains about which the network will filter and transfer in-

puts. This shift in operating point allows the nonlinearities

inherent in spiking dynamics to change the gain of how input

variability transfers to output variability (Doiron et al., 2016).

This mechanism has been suggested for how top-down or bot-

tom-up modulation affects population variability in recurrent

excitatory-inhibitory cortical networks (Kanashiro et al., 2017;

Hennequin et al., 2018). Our model of variability modulation is

similar, since the top-down attentional signal does shift the oper-

ating point of our nonlinear network; however, there are some

key distinctions.

In disordered networks (Kanashiro et al., 2017) or networks

with only one-dimensional structure (Hennequin et al., 2018),

an external source of fluctuations is required; otherwise, the

network is either in the asynchronous or pathologically synchro-

nous solution depending upon parameter choices (Figures 3Ai,

3Aiii, and 3D). Since these networks do not produce variability

internally, the operating point shift merely changes how the

network filters the external fluctuations. However, in our model

the two-dimensional spatial structure supports rich internal

chaotic network dynamics outside the asynchronous state, yet

with population-wide correlations that are a reasonable mimic

of experiment (Figures 3Aiv, 3C, and 3E). There is no need to as-

sume a source of external fluctuations.

Spatiotemporal chaos is a hallmark feature of systems that are

far from equilibrium in physics, chemistry, and biology (Cross

andHohenberg, 1993). In particular, low-viscosity fluids produce

a special brand of spatiotemporal chaotic behavior labeled tur-

bulence, characterized by the presence of vortices and eddies

in the fluid flow (Davidson, 2015). Like our network, the character

of turbulent flow is very dependent upon the dimension of the



fluid, with one-dimensional fluids not showing turbulence, and

two-dimensional turbulent flow having larger spatial scales

than the flow in full three-dimensional fluids (Davidson, 2015).

The dynamics within recurrent networks of neurons are certainly

not equivalent to that of fluids; nevertheless, the fluid analogy to

our work is tempting since the chaotic dynamics of our two-

dimensional network have a macroscopic character that permits

low, but non-vanishing, pairwise correlations that extend broadly

over the network. The effect of top-down attention is to not only

shift the operating point of the network but also dampen the

macroscopic chaotic dynamics of the network. In other words,

attention not only attenuates the transfer of population-wide

variability, as in other models (Kanashiro et al., 2017; Hennequin

et al., 2018), but also quenches the variability that is to be

transferred. This permits a near-complete attention-mediated

suppression of internally generated correlations (Figure 7D).

This extreme sensitivity allows top-down inputs to easily control

the processing state of a network.

State-dependent shifts in population-wide variability are wide-

spread throughout cortex (Doiron et al., 2016) and are often a

signature of cognitive control. The circuit structure of our

network is not a special feature of the primate visual system,

but rather a generic property of most cortices. We thus expect

that the basic mechanisms for population-wide variability and

its modulation exposed in our study will be operative in many re-

gions of the cortex, and in many animal systems.
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Algorithms for simulation of spiking neuron networks This paper https://github.com/hcc11/SpatialNeuronNet

MATLAB MathWorks https://www.mathworks.com
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Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Brent

Doiron (bdoiron@pitt.edu).

METHOD DETAILS

Spiking neuron network
The network consists of three layers. Layer 1 is modeled by a population of N1 = 2;500 excitatory neurons, the spikes of which are

taken as independent Poisson processes with a uniform rate r1 = 10 Hz. Layer 2 and Layer 3 are recurrently coupled networks with

excitatory ða= eÞ and inhibitory ða= iÞ populations of Ne = 40;000 and Ni = 10;000 neurons, respectively. Each neuron is modeled as

an exponential integrate-and-fire (EIF) neuron whose membrane potential is described by:

Cm

dVa
j

dt
= � gL

�
Va
j � EL

�
+gLDTe

ðVa
j
�VTÞ=DT + Iaj ðtÞ: (Equation 3)

Each time Va
j ðtÞ exceeds a threshold Vth, the neuron spikes and themembrane potential is held for a refractory period tref then reset

to a fixed value Vre. Neuron parameters for excitatory neurons are tm =Cm=gL = 15 ms, EL = � 60 mV, VT = � 50 mV, Vth = � 10 mV,

DT = 2mV, Vre = � 65mV and tref = 1:5ms. Inhibitory neurons are the same except tm = 10ms,DT = 0:5mV and tref = 0:5ms. The total

current to the jth neuron is:

Iaj ðtÞ
Cm

=
XNF

k = 1

JaFjkffiffiffiffi
N

p
X
n

hF

�
t � tF;kn

�
+
X
b= e;i

XNb

k = 1

Jabjkffiffiffiffi
N

p
X
n

hb

�
t � tb;kn

�
+ma; (Equation 4)

where N=Ne +Ni is the total number of the network population. The postsynaptic current is given by

hbðtÞ=
1

tbd � tbr

	
e�t=tbd � e�t=tbr ; tR0
0; t < 0

(Equation 5)

where ter = 1ms, ted = 5ms and tir = 1ms, tid = 8ms. The feedforward synapses from Layer 1 to Layer 2 have the same kinetics as the

recurrent excitatory synapse, i.e., h
ð2Þ
F ðtÞ = heðtÞ. The feedforward synapses from Layer 2 to Layer 3 have a fast and a slow

component.

h
ð3Þ
F ðtÞ=pfheðtÞ+pshsðtÞ (Equation 6)

with pf = 0:2, ps = 0:8. hsðtÞ has the same form as Equation 5 with a rise time constant tsr = 2 ms and a decay time constant

tsd = 100 ms. The excitatory and inhibitory neurons in Layer 3 receive static current me and mi, respectively.

Neurons on the three layers are arranged on a uniform grid covering a unit square G = ½0; 1�3 ½0;1�. The probability that two

neurons, with coordinates x= ðx1; x2Þ and y= ðy1; y2Þ respectively, are connected depends on their distance from one another

measured periodically on G:

pabðx; yÞ=pabgðx1 � y1;abÞgðx2 � y2;abÞ: (Equation 7)

Here pab is the mean connection probability and

gðx;sÞ= 1ffiffiffiffiffiffi
2p

p
s

XN
k =�N

e�ðx + kÞ2=ð2s2Þ (Equation 8)

is a wrapped Gaussian distribution. Excitatory and inhibitory recurrent connection widths of Layer 2 are a
ð2Þ
rec : =a

ð2Þ
e =a

ð2Þ
i = 0:1 and

feedforward connection width from Layer 1 to Layer 2 is a
ð2Þ
ffwd = 0:05. The recurrent connection width of Layer 3 is a

ð3Þ
rec = 0:2 and the
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feedforward connection width from Layer 2 to Layer 3 is a
ð3Þ
ffwd = 0:1. A presynaptic neuron is allowed tomakemore than one synaptic

connection to a single postsynaptic neuron.

The recurrent connectivity of Layer 2 and Layer 3 have the same synaptic strengths and mean connection probabilities. The recur-

rent synaptic weights are Jee = 80mV, Jei = � 240mV, Jie = 40mV and Jii = � 300mV. Recall that individual synapses are scaled with

1=
ffiffiffiffi
N

p
(Equation 4); so that, for instance, Jee=

ffiffiffiffi
N

p
z0:36 mV. The mean connection probabilities are pee = 0:01, pei = 0:04, pie = 0:03,

pii = 0:04. The out-degrees are Kout
ee = 400, Kout

ei = 1600, Kout
ie = 300 and Kout

ii = 400. The feedforward connection strengths from

Layer 1 to Layer 2 are J
ð2Þ
eF = 140 mV and J

ð2Þ
iF = 100 mV with probabilities p

ð2Þ
eF = 0:1 and p

ð2Þ
iF = 0:05 (out-degrees Kout

eF2 = 4000 and

Kout
eF2 = 500). The feedforward connection strengths from Layer 2 to Layer 3 are J

ð3Þ
eF = 25 mV and J

ð3Þ
iF = 15 mV with mean probabilities

p
ð3Þ
eF = 0:05 and p

ð3Þ
iF = 0:05 (out-degrees are Kout

eF3 = 2000 and Kout
iF3 = 500). Only the excitatory neurons in Layer 2 project to Layer 3.

The spatial models in Figures 3Aii and 3Aiv contain only Layer 1 and Layer 2. In themodel with disordered connectivity, the connec-

tion probability between a pair of neurons is pab, independent of distance. Other parameters are the same as the spatial model. The

decay time constant of IPSC ðtidÞ was varied from 1 to 15 ms (Figure 3E). The rise time constant of IPSC ðtirÞ is 1 ms when tid > 1 ms

and 0.5 ms when tid = 1 ms.

The parameters used in Figures 4C and 4D are mI = 0:1;0:15; 0:2;0:25; 0:3;0:35; 0:4½ � mV/ms and mE = 0 mV/ms. The mean firing

rates in Layer 2 are r
ð2Þ
e = 19 Hz and r

ð2Þ
i = 9 Hz. In the further analysis (Figures 4E, 5C, 5D, 6B, and 6C), we used mI = 0:2 mV/ms

for the unattended state and mI = 0:35 mV/ms for the attended state. In simulations of the spatial model with broad inhibitory projec-

tion (Figure 6C), a
ð3Þ
e = 0:1, a

ð3Þ
i = 0:2. Other parameters were not changed.

The slow component of feedforward excitation (Equation 6) allows for large spike count Fano factors (Figure S5), but when

replaced with the same fast kinetics of recurrent excitation the low dimensional population-wide variability and its attentional mod-

ulation are qualitatively unaffected (Figure S8).

All simulations were performed on the CNBC Cluster in the University of Pittsburgh. All simulations were written in a combination

of C and MATLAB (MATLAB R 2015a, MathWorks). The differential equations of the neuron model were solved using forward Euler

method with time step 0.01 ms.

Neural field model and stability analysis
We use a two dimensional neural field model to describe the dynamics of population rate (Figure 6). The neural field equations are

ta
vraðx; tÞ

vt
= � ra +faðwae � re +wai � ri +maÞ; (Equation 9)

where raðx; tÞ is the firing rate of neurons in population a= e; i near spatial coordinates x˛½0;1�3 ½0;1�. The symbol � denotes convo-

lution in space, ma is a constant external input and wabðxÞ=wabgðx; sbÞ where gðx; sbÞ is a two-dimensional wrapped Gaussian with

width parameter sb, b = e; i. The transfer function is a threshold-quadratic function, faðxÞ = ka½x2�+ . The timescale of synaptic and

firing rate responses are implicitly combined into ta. In networks with approximate excitatory-inhibitory balance, rates closely track

synaptic currents (Renart et al., 2010), so ta represents the synaptic time constant of population a = e; i.

For constant inputs, me and mi, there exists a spatially uniform fixed point, which was computed numerically using an iterative

scheme (Rosenbaum and Doiron, 2014). Linearizing around this fixed point in Fourier domain gives a Jacobian matrix at each spatial

Fourier mode (Rosenbaum and Doiron, 2014)

Jð n!Þ=


ð � 1+ge ~weeð n!ÞÞ=te ge ~weið n!Þ=te

gi ~wieð n!Þ=ti ð � 1+gi ~wiið n!ÞÞ=ti

�
:

where n!= ðn1;n2Þ is the two-dimensional Fourier mode, ~wabð n!Þ=wabexpð�2jj n!j j 2p2s2bÞ is the Fourier coefficient of wabðxÞ with

k n!k 2 = n21 + n22 and ga is the gain, which is equal to f0
aðraÞ evaluated at the fixed point. The fixed point is stable at Fourier mode

n
!

if both eigenvalues of Jð n!Þ have negative real part. Note that stability only depends on the wave number, k = k n!k , so Turing-

Hopf instabilities always occur simultaneously at all Fourier modes with the same wave number (spatial frequency).

For the stability analysis in Figure 6A, ti varies from 2.5 ms to 25 ms, si varies from 0.05 to 0.2, and te = 5 ms and se = 0:1. The

rest of the parameters were wee = 80, wei = � 160, wie = 120, wii = � 200, ke = 1, ki = 1, me = 0:48 and mi = 0:32. Depolarizing

the inhibitory population mi = 0:5ð Þ expands the stable region (Figure 6A, black dashed).

QUANTIFICATION AND STATISTICAL ANALYSIS

Datasets
Each of the two datasets (recordings from V4 and recordings from V1 and MT) was collected from two different rhesus monkeys as

they performed an orientation-change detection task. All animal procedures were in accordance with the Institutional Animal Care

and Use Committee of Harvard Medical School, University of Pittsburgh and Carnegie Mellon University.

For analysis in Figures 1A, 1C, 5A, and 5B, data was collected with two microelectrode arrays implanted bilaterally in area V4 (Co-

hen andMaunsell, 2009). In our analysis, we include stimulus presentations prior to the change stimulus from correct trials, excluding
e2 Neuron 101, 337–348.e1–e4, January 16, 2019



the first stimulus in a trial to avoid adaptation effects. Spike counts during the sustained response (120 - 260 ms after stimulus onset)

are considered for the correlation and factor analysis. Neurons recorded from either the left or right hemisphere in one session are

treated separately. There are a total of 42,496 trials for 72,765 pairs from 74 recording sessions. Two sessions from the original

study were excluded for factor analysis due to inadequate trials. The trial number and unit number of each session is summarized

in Table S1.

For analysis in Figure 1B, data was collected with one microelectrode array implanted in area V1 and a single electrode or a

24-channel linear probe inserted into MT (Ruff and Cohen, 2016a). Again, our analysis includes full contrast stimulus presentations

prior to the change stimulus from correct trials and excludes the first stimulus in a trial to avoid adaptation effects. Spike counts

are measured 30 - 230 ms after stimulus onset for V1 and 50 - 250 ms after stimulus onset for MT to account for the average visual

latencies of neurons in both areas. There are a total of 1,631 V1-MT pairs from 32 recording sessions.

Noise correlation
To compute the noise correlation of each simulation, 500 neurons were randomly sampled without replacement from the excitatory

population of Layer 3 and Layer 2 within a [0, 0.5]x[0, 0.5] square (considering periodic boundary condition). Spike counts were

computed using a sliding window of 200 ms with 1 ms step size and the Pearson correlation coefficients were computed between

all pairs. Neurons of firing rates less than 2 Hz were excluded from the computation of correlations. In Figures 4C and 4D, for each mi

there were 50 simulations and each simulation was 20 s long. Connectivity matrices and the initial states of each neuron’s membrane

potential were randomized in each simulation. The first 1 s of each simulation was excluded from the correlation analysis. Standard

error was computed based on themean correlations of each simulation. For simulations of Figure 3E, therewas one simulation of 20 s

per tid and the connectivity matrices were randomized for each simulation. To compute the noise correlation, 1000 neurons were

randomly sampled without replacement in the excitatory population of Layer 2 within a [0, 0.5]x[0, 0.5] square. Correlations are

computed between firing rates that are smoothed with a Gaussian window of width 10 ms.

Factor analysis
Factor analysis assumes spike counts of n simultaneously recorded neurons x˛Rn31 is a multi-variable Gaussian process

x � N �
m;LLT +J

�
where m˛Rn31 is the mean spike counts, L˛Rn3m is the loading matrix of them latent variables andJ˛Rn31 is a diagonal matrix of

independent variances for each neuron. We choosem= 5 and compute the eigenvalues of LLT , li ði = 1;2;.;mÞ, ranked in descend-

ing order. The corresponding eigenvectors are denoted as ni and the covariance components are linin
T
i ði = 1;2;.;mÞ. The covari-

ance matrix is approximated as

Covðx; xÞ=
Xm
i = 1

linin
T
i +J: (Equation 10)

We compute the residual covariance after subtracting the first mode as

Q=Covðx; xÞ � L1 3 LT
1 ; (Equation 11)

where Covðx; xÞ is the raw covariance matrix of x and L1 is the loading matrix when fitting withm = 1. The mean raw covariance and

residual (Figures 4E and 1C, right) are the mean of the off-diagonal elements of Covðx; xÞ and Q, respectively.

When applying factor analysis on model simulations (Figure 4E), we randomly selected 50 excitatory neurons from Layer 3, whose

firing rates were larger than 2 Hz in both the unattended and attended states. There were 15 simulations of 20 s each per connectivity

matrices realization, and there were 8 realizations of connectivity matrices in total. Spike trains were truncated into 140 ms spike

count window with a total of 2,025 counts per neuron. There were 80 non-overlapping sampling of neurons (10 sampling per reali-

zation of connectivity matrices) and we applied factor analysis on each sampling of neuron spike counts.

To compute the distance dependent functions of each covariance component linin
T
i (Figures 5C and 5D), we randomly selected

500 excitatory neurons fromLayer 3, whose firing rateswere larger than 2Hz in both the unattended and attended states. To compute

the distance dependent functions of covariance as well as convariance components for the V4 data (Figures 5A and 5B), the pairs

across sessionswere pooled to compute themean andSEMat each distance value. The distance valueswere discrete since neurons

were recorded with an multi-electrode array with a distance between adjacent electrodes being 400 mm. The number of pairs at each

distance value are shown in Table S2.

Measure internal variability
To study the chaotic population firing rate dynamics of Layer 3 (Figure 7), we fixed the spike trains realizations from Layer 1 neurons,

the membrane potential states of the Layer 2 neurons and all connectivity matrices. Only the initial membrane potentials of Layer 3

neurons were randomized across trials. There were 10 realizations of Layer 1 and Layer 2, each of which was 20 s long. For each

simulation of Layer 2, 20 repetitions with different initial conditions were simulated for Layer 3. The connectivity matrices in Layer 3

were the same across the 20 repetitions but different for each realization of Layer 1 and Layer 2. The realizations of Layer 1 and Layer 2
Neuron 101, 337–348.e1–e4, January 16, 2019 e3



and the connectivity matrices were the same for the attended and unattended states. Trial-to-trial variance of Layer 3 population

rates (Figure 7D) was the variance of the mean population rates of the Layer 3 excitatory population, smoothed by a 200 ms rectan-

gular filter, across the 20 repetitions. The first second of each simulation was discarded.

DATA AND SOFTWARE AVAILABILITY

The data that support the findings of this study are available from the corresponding author upon request. Computer code for all

simulations and data analysis can be found at https://github.com/hcc11/SpatialNeuronNet.
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