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First published June 29, 2016; doi:10.1152/jn.00017.2016.—Normaliza-
tion, which divisively scales neuronal responses to multiple stimuli, is
thought to underlie many sensory, motor, and cognitive processes. In
every study where it has been investigated, neurons measured in the
same brain area under identical conditions exhibit a range of normal-
ization, ranging from suppression by nonpreferred stimuli (strong
normalization) to additive responses to combinations of stimuli (no
normalization). Normalization has been hypothesized to arise from
interactions between neuronal populations, either in the same or
different brain areas, but current models of normalization are not
mechanistic and focus on trial-averaged responses. To gain insight
into the mechanisms underlying normalization, we examined interac-
tions between neurons that exhibit different degrees of normalization.
We recorded from multiple neurons in three cortical areas while
rhesus monkeys viewed superimposed drifting gratings. We found
that neurons showing strong normalization shared less trial-to-trial
variability with other neurons in the same cortical area and more
variability with neurons in other cortical areas than did units with
weak normalization. Furthermore, the cortical organization of normal-
ization was not random: neurons recorded on nearby electrodes tended
to exhibit similar amounts of normalization. Together, our results
suggest that normalization reflects a neuron’s role in its local network
and that modulatory factors like normalization share the topographic
organization typical of sensory tuning properties.
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NEW & NOTEWORTHY

Normalization is thought to underlie many sensory, motor,
and cognitive processes and likely arises from interactions
between neuronal populations. To gain insight into nor-
malization mechanisms, we recorded the activity of popu-
lations of neurons in response to combinations of visual
stimuli. We found that neurons that show strong normal-
ization shared less trial-to-trial variability with other neu-
rons in the same cortical area and more variability with
neurons in other cortical areas than did units with weak
normalization.

NORMALIZATION, in which a neuron’s response is divisively
scaled when multiple stimuli are presented, is thought to
underlie many sensory, motor, and cognitive properties, rang-
ing from olfaction in fruit flies to attention in primates (Britten
and Heuer 1999; Carandini et al. 1997; Heeger 1992; Lee and
Maunsell 2009; Ni et al. 2012; Ohshiro et al. 2011; Olsen et al.
2010; Reynolds and Heeger 2009; Simoncelli and Heeger
1998; Tolhurst and Heeger 1997). Because it is so widespread,
normalization has been hypothesized to represent a canonical

cortical computation (for review see Carandini and Heeger
2012). Despite substantial recent interest from the experimen-
tal and theoretical neuroscience communities, the neuronal
mechanisms underlying normalization remain poorly under-
stood.

Most models of normalization are descriptive (e.g., Caran-
dini and Heeger 2012), but they appeal to the notion that
normalization arises through interactions between groups of
neurons (see also Busse et al. 2009; Chance et al. 2002; Rubin
et al. 2015; Rust et al. 2006; Sit et al. 2009). Experimentally,
even neurons measured in the same brain area under identical
experimental conditions exhibit different degrees of normal-
ization, ranging from strong suppression by nonpreferred stim-
uli to linear summation of responses to combinations of stimuli
(strong to weak normalization; for examples, see Fig. 1; Busse
et al. 2009; Lee and Maunsell 2009;). We hypothesized that if
normalization reflects the activity of populations of neurons,
then a signature of this mechanism might be differences in
shared variability between neurons that exhibit strong or weak
normalization and other neurons that are in the same or in
different cortical areas.

We also hypothesized that we could gain insight into the
way that neuron-to-neuron differences in normalization arise
by examining the way neurons that exhibit different degrees of
normalization are arranged in cortex. Different patterns of
interactions with populations of neurons in the same or differ-
ent cortical areas could arise either through random neuron-to-
neuron differences in the strength of direct or indirect connec-
tions or through spatially specific inputs to groups of neurons.
We reasoned that we could differentiate between these two
possibilities by measuring whether neurons that are located
near each other in cortex exhibit similar degrees of normaliza-
tion.

To test these hypotheses, we used an approach with two
important components. First, we recorded the responses of
neurons in three visual areas to identical stimuli, which al-
lowed us to extract general observations that were not specific
to a particular cortical area. Second, we recorded from multiple
neurons within each cortical area and sometimes in two areas
simultaneously, which allowed us to probe interactions be-
tween neurons with different properties and also to measure
how normalization is organized across the cortex.

We found strong evidence that the degree of normalization
a neuron exhibits is reflected in the pattern of its interactions
with neurons both in the same and in different cortical areas.
Neurons that showed strong normalization shared less trial-to-
trial variability (had lower spike count correlations, also
termed rSC or noise correlations) with other neurons in the
same cortical area and shared more variability with neurons in
other cortical areas than units that showed weak normalization.
We also found that normalization is not randomly organized in
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the brain, meaning that neurons that are located near each other
in the brain tend to exhibit a similar degree of normalization.

Together, our results will constrain future models of the
neuronal mechanisms underlying normalization. The relation-
ship between spike count correlations and connectivity is
complicated by the facts that spike count correlations can
reflect either direct or indirect inputs and can be reduced when
a pair of neurons either have fewer common inputs or have
both inhibitory and excitatory inputs in common that serve to
cancel correlations (Renart et al. 2010). Empirically, however,
neurons with higher spike count correlations tend to have more
or stronger common inputs than neurons with lower spike
count correlations (Hofer et al. 2011; Okun et al. 2015). Our
results therefore provide evidence in favor of a model in which
normalization is instantiated by inputs that 1) are spatially
specific and 2) vary in strength from neuron to neuron such that
neurons that receive strong normalization-related inputs from
within the same area have weak inputs from other cortical
areas, and vice versa. More generally, our study suggests that
recordings from groups of neurons in multiple cortical areas
can provide insight into the neuronal mechanisms underlying
cortical computations.

MATERIALS AND METHODS

Visual stimuli, subjects, and electrophysiological recordings. We
presented visual stimuli on a calibrated CRT monitor (calibrated to
linearize intensity, 1,024 � 768 pixels, 90- or 120-Hz refresh rate)
placed 57 cm from the animal. We used custom software (written in
MATLAB with the Psychophysics Toolbox; Brainard 1997; Pelli
1997) to present stimuli and monitor behavior. We monitored eye
position, using an infrared eye tracker (Eyelink 1000, SR Research),
and recorded eye position and pupil diameter (1,000 samples/s),
neuronal responses (30,000 samples/s), and the signal from a photo-
diode to align neuronal responses to stimulus presentation times
(30,000 samples/s), using hardware from Ripple Microsystems.

We recorded from visual areas V1, MT, and V4 in a total of four
adult male rhesus monkeys (Macaca mulatta; monkeys BR, JD, ST,
SY, weights 8.8, 10.0, 9.0, and 9.3 kg, respectively). All animal
procedures were approved by the Institutional Animal Care and Use
Committees of the University of Pittsburgh and Carnegie Mellon
University. Before training, we implanted each animal with a titanium
head holder. Then, the animal was trained to passively fixate while we
presented peripheral visual stimuli. Monkeys BR, JD, and ST were also
trained to perform other visually guided tasks that were not used in the
present experiments. Once training was complete, we implanted a
microelectrode array (Blackrock Microsystems). In monkeys BR and
ST, we implanted a 10 � 10 microelectrode array in area V1. In
monkeys SY and JD, we implanted a pair of 6 � 8 microelectrode
arrays in V4. In monkey SY, both arrays were in V4 in the right
hemisphere, and monkey JD received bilateral V4 implants. We
identified areas V1 and V4 with stereotactic coordinates and by
visually inspecting the sulci. We placed the V1 arrays posterior to the
border between V1 and V2 and placed the V4 arrays between the
lunate and the superior temporal sulci. The two V4 arrays were
connected to a single percutaneous connector. The distance between
adjacent electrodes of V1 and V4 arrays was 400 �m, and each
electrode was 1 mm long.

In the same surgical procedure, we also implanted recording
chambers that allowed access to area MT in monkeys BR and ST.
Recordings were made from electrodes inserted into area MT, which
was identified based on a combination of stereotaxic coordinates,
depth, gray and white matter transitions, and physiological properties.
We used 24-channel V-Probes (Plexon) with an interelectrode dis-
tance of 50 �m. The contacts had a diameter of 15 �m. We also

recorded with 24-channel linear microarrays (Alpha Omega) with
an interelectrode distance of 60 �m. The contacts had a diameter
of 12.5 �m and were arranged in two rows of 12 electrodes (the 2
rows were on opposite sides of the probe and were therefore
separated by �300 �m).

We recorded neuronal activity during daily experimental sessions
for several weeks in each animal. During each session, the monkeys
were rewarded for passively fixating while we presented superim-
posed orthogonal drifting gratings at a range of contrasts. Superim-
posed gratings elicit response suppression that has been called cross-
orientation suppression and has been shown in previous studies to be
well-described by divisive normalization (Busse et al. 2009; Carandini
et al. 1997; Heeger 1992; Heuer and Britten 2002). We verified that a
normalization model provides a good account of the trial-averaged
responses of the neurons we recorded (see below).

The stimuli we used were generally presented for 200 ms and were
large enough to cover the classical receptive fields of all of the
neurons we recorded (grating diameters depended on receptive field
eccentricity; range 2.5–7° of visual angle in V1, 7–13° in MT, and
1–9° in V4). Because V1 receptive fields are substantially smaller than
those in MT and V4, the stimuli typically covered a greater proportion
of the surrounds in V1 than in the other two areas.

Our data set includes 25 recording sessions in V1 (5 from monkey
BR and 20 from monkey ST), 30 recording sessions in MT (21 from
monkey BR and 9 from monkey ST), and 16 recording sessions in V4
(4 from monkey JD and 12 from monkey SY). In a subset of experi-
ments (1 in monkey BR and 9 in monkey ST), we were able to record
simultaneously from groups of neurons in V1 and MT with overlap-
ping receptive fields.

During recordings from the chronically implanted microelectrode
arrays we used in V1 and V4, it is nearly impossible to tell whether
we recorded from the same single unit or multiunit clusters on the
array across subsequent days. We therefore included analyses of
individual example recording sessions (see Fig. 4, A and D). These
example days were picked because the animal performed a large
number of trials with good psychophysical performance and because
recording quality was good. Because we inserted the MT probe each
day, each MT unit (and V1-MT pair) is unique.

Data analysis. All spike sorting was done manually after the
experiment with Plexon’s Offline Sorter. We sorted single units as
well as multiunit clusters (sorted to remove noise). We included single
units or multiunit clusters for analysis if their response to 0% contrast
stimuli (a blank screen) was significantly different from the average
response to stimuli with at least 50% contrast (t-test, P � 0.01). For
many analyses we combined data from single units and multiunits,
and we use the term “unit” to refer to either. We recorded a total of
3,835 units in V1 (230 single units and 3,605 multiunits), 976 units in
MT (96 single units and 880 multiunits), and 1,550 units in V4 (86
single units and 1,464 multiunits).

To allow for the latency of V1, V4, and MT responses, our analyses
are based on spike count responses calculated from 30–230 ms after
stimulus onset for V1 and 50–250 ms after stimulus onset for V4 and
MT. We quantified spike count correlations (rSC) as the Pearson’s
correlation coefficient between spike count responses to repeated
presentations of the same stimulus. This measure is extremely sensi-
tive to outliers, so we did not analyze trials for which the response of
either unit was more than three standard deviations away from its
mean (following the convention of Kohn and Smith 2005). For each
pair of units recorded simultaneously from the same hemisphere but
not from the same electrode, we computed rSC separately for each
50% contrast stimulus condition (with single orientations or superim-
posed orthogonal gratings) and averaged the results. Taking the
z-scored responses for each condition and computing a single value of
rSC for each pair (as in Ecker et al. 2010) gave qualitatively similar
results.

The distribution matching procedure to control for electrode dis-
tance in our analysis of spike count correlations (see Fig. 5) is
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described in detail elsewhere (Churchland et al. 2010; Ruff and Cohen
2014a). Briefly, the goal of this analysis was to have the same
distribution of electrode distances for pairs of neurons with normal-
ization indexes that were below (left bars in Fig. 5) or above (right
bars in Fig. 5) the median normalization index. We compared distri-
butions of electrode distances for each half of the data set and selected
the greatest common distribution. We then subsampled our pairs of
units to match that distribution and analyzed spike count correlations
for those subdistributions. There was a large overlap of these distri-
butions of electrode distances. The mean-matched resampling process
was repeated 1,000 times, and the bars in Fig. 5 represent the average
z-scored rSC values from these resampled distributions, with error bars
that are the standard error of the mean from one representative
resampled distribution.

To assess the extent to which we recorded the same cell on multiple
contacts of the 24-channel probes we used to record in MT, we
calculated zero-lag synchrony with a trial shuffle correction (Smith
and Kohn 2008) for all pairs of units collected on different electrodes.
The results of our synchrony analyses were qualitatively similar
whether we analyzed spikes during all stimulus presentations (see Fig.
7B) or all spikes recorded during the experimental session, regardless
of the stimuli or behavior.

Normalization model of cross-orientation suppression. In this
study, we used cross-orientation suppression as a proxy for normal-
ization. To quantify the extent to which divisive normalization ac-
counts for the suppression we observed, we fit the trial-averaged
responses of the units we recorded to a standard normalization model.
There are many published instantiations of normalization models. We
selected one that has only four free parameters (Ni et al. 2012), but it
is very similar to other published normalization models (Boynton
2009; Carandini and Heeger 2012; Lee and Maunsell 2009; Reynolds
and Heeger 2009).

In this instantiation of the model, the mean response of a neuron to
a combination of stimuli in its preferred (P) or null orientation (N) is
given by

RP,N �
cPLP � cNLN

cP � �cN � �
(1)

where RP,N is the mean response of the neuron under study, cP and cN

are the contrasts of the preferred and null gratings, LP and LN

represent the response of the neuron’s linear receptive field to a
full-contrast stimulus with the preferred or null orientation, � is a
tuned normalization parameter, and � is a semisaturation constant. For
each neuron and pair of orientations, we fit the four free parameters of
this model (LP, LN, �, and �) to the 27 combinations of contrasts we
used.

The numerator of Eq. 1 represents the tuned, linear response of the
neuron, and the neuron’s preference for the preferred over the null
orientation is determined by LP and LN. Note that because we did not
optimize the orientations of the stimuli under study for the tuning of

each unit, responses to the two stimuli were often similar. We
therefore designated the “preferred” orientation as the orientation in
each pair that elicited the bigger mean response, and the “null”
orientation was the opposite orientation. For some units/orientation
pairs, LP and LN were therefore very similar.

The denominator of Eq. 1 represents divisive normalization. It
depends only on the contrasts of the stimuli and on the tuned
normalization parameter � and the semisaturation constant �.
These parameters represent tuned normalization from combina-
tions of stimuli and contrast-dependent normalization, respectively
(Carandini et al. 1997).

RESULTS

Our results are based on multineuron recordings from visual
areas V1, MT, and V4 in a total of four rhesus monkeys. The
monkeys were rewarded for passively fixating while we pre-
sented superimposed orthogonal drifting gratings that were
large enough to cover the receptive fields of the neurons we
recorded. This is a standard procedure for measuring cross-
orientation normalization (Busse et al. 2009). Figure 1 shows
the responses of two representative V1 units to different
combinations of contrasts of the two gratings. We calculated a
normalization index for each unit we recorded, which we
defined as the ratio of the sum of the unit’s responses to 50%
contrast stimuli at each of two orthogonal orientations to the
unit’s response to those same two gratings when they were
superimposed. Therefore, a normalization index of 1 represents
perfect summation (no normalization; Fig. 1A) and a normal-
ization index of 2 means that the response to the superimposed
stimulus was the average of the responses to each stimulus
alone (strong normalization; Fig. 1B). When we measured
normalization using multiple pairs of stimulus orientations, we
report the mean normalization index for each unit. This sim-
plification is well-justified because the normalization index we
calculated did not depend substantially on the stimulus orien-
tation (see below and Fig. 3).

Consistent with previous studies (Lee and Maunsell 2009;
Ni et al. 2012; Rust et al. 2006), we found units in V1, MT, and
V4 whose normalization indexes spanned a wide range (Fig.
2). This variability did not depend on whether the unit was a
well-isolated single unit or a multiunit cluster; the mean nor-
malization index was indistinguishable for single units and
multiunits in each area (mean normalization indexes were V1:
1.18 for single units and 1.14 for multiunits, t-test, P � 0.10;
MT: 1.08 for single units and 1.04 for multiunits, t-test, P �
0.54; and V4: 1.20 for single units and 1.08 for multiunits,

0 6 12 25 50 100

0

6

12

25

50

100

S
tim

ul
us

 2
 c

on
tr

as
t (

%
)

Stimulus 1 contrast (%)

0

40

80

120F
iring rate (sp/s)

0 6 12 25 50 100

0

6

12

25

50

100

S
tim

ul
us

 2
 c

on
tr

as
t (

%
)

Stimulus 1 contrast (%)

0

40

80

120F
iring rate (sp/s)

A BNo normalization;
normalization index = 1.00

Strong normalization;
normalization index = 1.85 Fig. 1. Responses of 2 example V1 units to

superimposed orthogonal drifting gratings as a
function of the contrast of each grating (x- and
y-axes). The neuron in A responds linearly to the
2 stimuli, meaning that its response to 2 super-
imposed stimuli is approximately equal to the
sum of its responses to the 2 stimuli presented
alone (compare responses to the outlined stimuli
on the x- and y-axes with the response to the
combined stimulus along the diagonal). The
neuron in B exhibits strong normalization,
meaning that its response to the superimposed
stimuli is similar to the average of its responses
to the 2 stimuli presented alone.
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t-test, P � 0.23). The mean normalization index was signifi-
cantly different for each area (t-tests on each pair of areas, P �
0.01).

Normalization is largely a property of a cell rather than a
response to specific sensory stimuli. Our recording methods
allowed us to measure the spiking activity of many units
simultaneously. Therefore, we could not optimize the orienta-
tions of the gratings for the tuning of each cell (Busse et al.
2009). Because all of our analyses involved comparing the
properties of neurons with different normalization indexes, we
explored the relationship between normalization indexes and
the extent to which the stimuli were optimized for the tuning of
the cell.

In many recording sessions, we recorded responses to sev-
eral pairs of orthogonal gratings. We used responses to full-
contrast stimuli presented alone (i.e., with the orthogonal
grating at 0% contrast) to construct a tuning curve for each
unit. Figure 3A depicts a tuning curve for an example V1 unit.
For each unit, we identified the pair of orthogonal gratings that
elicited the biggest response difference (“best pair” in Fig. 3A)
and the pair of orthogonal gratings that elicited the smallest
response difference (“worst pair” in Fig. 3A) and computed a
normalization index for each pair.

We found that the degree of normalization a unit exhibited
did not depend in a systematic way on whether the normaliza-
tion index was computed based on responses to the best or
worst pair of orientations (Fig. 3, B–D). The normalization
indexes computed from responses to the best and worst orien-
tations were significantly correlated in all three cortical areas
(r � 0.44 for V1, 0.85 for MT, 0.93 for V4, all of which are
significantly different from 0, P � 10�20), and the mean
normalization indexes for best and worst orientations were

indistinguishable (paired t-tests, P � 0.05 in all 3 areas).
Similarly, we found a strong correspondence between normal-
ization indexes calculated using 50% contrast stimuli (which
we used here) and normalization indexes calculated using
lower-contrast stimuli (see below for a discussion of this issue
using fits to a normalization model).

Despite these similarities, the strength of the correlation
between normalization indexes computed from the best and
worst orientations differed across areas. In part, the lower
correlation between indexes in V1 and MT compared with V4
could be because of noise; the number of trials per condition
was lower in V1 (mean 32 trials per condition) and MT (mean
29 trials per condition) than in V4 (mean 165 trials per
condition).

Another possibility is that normalization might depend on
the direction or orientation selectivity of the unit, which varies
across areas. To determine whether normalization index de-
pended on the extent to which the unit responded differently to
the two orthogonal grating orientations, we calculated an
orientation selectivity index for each unit and pair of orienta-
tions that was equal to the absolute value of the difference in
the unit’s mean response to single 50% contrast gratings
divided by the sum of those responses. The mean orientation
selectivity index was 0.15 for V1, 0.16 for MT, and 0.10 for V4
[all significantly greater than 0 (t-test, P � 10�5) and signifi-
cantly different from each other (t-tests, P � 0.01 for each pair
of areas)]. A large proportion of units/conditions had orienta-
tion selectivity indexes that were significantly greater than 0
(78% of units/conditions in V1, 69% of units/conditions in MT,
and 54% of units/conditions in V4). However, normalization
index was not significantly correlated with orientation selec-
tivity index either for the full data sets or for units/conditions
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V4 (C).

n.
i.:

 b
es

t o
rie

nt
at

io
n

normalization index: worst orientation

A B C

0 50 100 150
0

20

40

60

80

100

F
iri

ng
 r

at
e 

(s
p/

s)

Orientation

Best
pair

Worst
pair

D

0 1 2 3
0

1

2

3
V1, R=0.44

0 1 2 3
0

1

2

3
MT, R=0.85

0       1        2       3
0

1

2

3
V4, R=0.93

Fig. 3. Normalization is largely a property of a cell rather than a response to specific stimuli. A: responses of an example V1 unit to single, full-contrast gratings
at different orientations (black line represents the best fit von Mises function). Arrows indicate the pairs of orthogonal gratings that elicit the largest (best
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with orientation selectivity indexes that were significantly
greater than 0 (P � 0.05 for each cortical area/data subset).
Furthermore, the difference in normalization index for the best
and worst orientation pairs was uncorrelated with orientation
selectivity index in MT and V4 (correlation coefficient �
�0.04, P � 0.10 in MT, correlation coefficient � �0.02, P �
0.44 in V4) and only very weakly anticorrelated in V1 (corre-
lation coefficient � �0.06, P � 0.01). Together, these results
suggest that normalization index does not depend strongly on
the orientation tuning of the cell.

Although the strength of the relationship between normal-
ization indexes for best and worst orientation pairs varied
across areas, these observations imply that to a large extent
normalization is a fixed property of a cell rather than a response
to the specific orthogonal motion directions we tested. This
idea is consistent with past results (Busse et al 2009). For the
present study, these observations also suggest that the results of
our analyses were not substantially affected by the fact that the
stimuli were not optimized for the orientation tuning of each
unit.

Cells that exhibit normalization have qualitatively different
interactions with other neurons within and across cortical
areas. Normalization is thought to arise through suppressive
interactions with a large group of other neurons. Current
models of normalization do not address response variability
(Carandini and Heeger 2012; Rubin et al. 2015). However, we
hypothesized that if normalization involves interactions be-
tween neurons we might see signatures of these interactions by
comparing the extent to which neurons that do or do not exhibit
normalization share trial-to-trial variability. We tested this
hypothesis by measuring correlations between trial-to-trial
fluctuations in the responses of pairs of simultaneously re-
corded units (termed spike count or noise correlations, or rSC).
The average multiunit spike count correlation varied across
recording sessions, animals, and brain areas (presumably be-
cause of differences in recording quality or average firing rate
or differences in recording methodology between the chroni-
cally implanted microarrays in V1 and V4 and the movable
probes we used in MT). We also found hints that normalization
is topographically organized (see Fig. 7), which meant that
individual recording sessions varied in mean normalization
index depending on the properties of the cluster of cells located
near the probe. To facilitate comparisons across recording
sessions, we therefore z-scored the spike count correlations and
normalization indexes within each recording session.

We found that within all three cortical areas spike count
correlation depended strongly on the extent to which the units
in a pair exhibited normalization. We first calculated spike
count correlations for pairs of units with similar normalization
indexes (bin size � a z score of 0.5). We found that pairs of
units that showed similarly strong normalization (high normal-
ization indexes) had lower average spike count correlations
than pairs of units that showed similarly weak normalization
(low normalization indexes). Figure 4, A and B, depict the
average z-scored spike count correlation for pairs of neurons
with similar normalization indexes (for example recording
sessions and the full data set, respectively). Across all pairs of
simultaneously recorded units, the correlation between
z-scored rSC and z-scored normalization index was negative for
each of the three cortical areas (P � 10�18 for each cortical
area). The correlation between rSC and normalization index

was also significantly less than zero in the majority of individ-
ual recording sessions for all three cortical areas (Fig. 4C). In
all three areas, the dependence of spike count correlation on
normalization index was maintained even when the distri-
butions of strong and weak normalizing pairs were matched
for electrode distance (compare left and right sets of bars in
Fig. 5).

In a subset of experiments, we were able to record from V1
and MT units with overlapping receptive fields. During these
recording sessions, we observed opposite patterns of correla-
tions between units in different cortical areas as we did for
pairs within the same area. Units that showed strong normal-
ization had higher average spike count correlations with units
that showed a similar degree of normalization in the opposite
cortical area than did units that showed weak normalization
(Fig. 4, D and E). Across all pairs of simultaneously recorded
V1 and MT units, the correlation between z-scored rSC and
z-scored normalization index was significantly greater than
zero (P � 10�17). The raw correlation between rSC and
normalization index was on average positive and was signifi-
cantly different from zero in the majority of individual record-
ing sessions (Fig. 4F). The relationship between cross-area
correlation and normalization index was also maintained when
the distributions of strong and weak normalizing pairs were
matched for electrode distance (compare left and right sets of
bars in Fig. 5).

Figures 4 and 5 focus on pairs of units with similar normal-
ization indexes. To visualize the full data set, we plotted
z-scored rSC (represented by colors in Fig. 6) as a function of
the normalization index of each unit in the pair. Within each
cortical area, units with very different normalization indexes
(upper left and lower right portions of Fig. 6, A–C) tended to
have very low spike count correlations. An important caveat of
these results is that the topographic organization of normaliza-
tion that we observed (see below) meant that units with
dissimilar normalization indexes were often located further
apart in the brain than units with more similar normalization
indexes. Our data set was not large enough for a distance
matching control as in Fig. 5, so some of the trend toward low
correlations between pairs of units with dissimilar normaliza-
tion indexes may be attributable to the known dependence of
rSC on cortical distance for pairs within V1 (Smith and Kohn
2008), MT (Zohary et al. 1994), and V4 (Smith and Sommer
2013).

The relationship between spike count correlation and nor-
malization index was similar for single units and multiunits
both within each cortical area and between V1 and MT. Within
each cortical area, the Pearson’s correlation between z-scored
rSC and z-scored normalization index was significantly differ-
ent from zero for both single units and multiunits and for each
cortical area/combination of areas (within V1, the Pearson’s
correlation coefficient was �0.14, P � 0.001 for single units
and �0.15, P � 10�30 for multiunits; within MT, the Pear-
son’s correlation coefficient was �0.33, P � 10�7 for single
units and �0.12, P � 10�28 for multiunits; within V4, the
Pearson’s correlation coefficient was �0.13, P � 10�3 for
single units and �0.16, P � 10�11 for multiunits; between V1
and MT, the Pearson’s correlation coefficient was 0.17, P �
0.03 for single units and 0.21, P � 10�16 for multiunits).

Cortical organization of normalization. Topography is a
hallmark of the organization of neurons in many sensory
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modalities. Neurons with similar receptive field locations or
tuning for orientation or direction are located near each other in
V1, MT, and V4. Over the past several decades, topographic
organization in sensory cortex has been identified for a wide
variety of sensory tuning properties (Hubel 1982; Mountcastle
1997; Yao and Li 2002). However, whether there is functional

organization for modulatory factors like normalization remains
unknown.

To determine whether normalization strength is topograph-
ically organized, we compared normalization indexes for each
pair of simultaneously recorded units. Borrowing a convention
in a previous study for quantifying topography (DeAngelis and
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Newsome 1999), we plotted the difference between normal-
ization indexes as a function of the distance between the
electrodes for each pair of simultaneously recorded units. In
each cortical area, difference in normalization index increases
with cortical distance until an interelectrode distance of 1–2
mm (Fig. 7, A and B).

Because our normalization index is effectively bounded
(nearly all normalization indexes fell between 0.5 and 2.5; see
Fig. 2), the difference in normalization index between two
neurons cannot increase monotonically as a function of dis-
tance, so the functions in Fig. 7A decrease after 1–2 mm. Put
another way, neurons that are very far apart in the brain will
have a difference in their normalization indexes that are close
to the average difference (dashed lines in Fig. 7A) rather than
a maximum, meaning that in the case of perfect topography the
functions in Fig. 7, A and B, would oscillate. There are

differences between cortical areas (compare the 3 colors in Fig.
7, A and B) and between single units and multiunits (compare
the dotted and solid lines in Fig. 7B). The differences between
single units and multiunits arise from the fact that that multi-
units exhibit a smaller range of normalization indexes than
single units. The standard deviations of distributions of nor-
malization indexes were 0.11 for multiunits and 0.16 for single
units in V1, 0.13 for multiunits and 0.17 for single units in V4,
and 0.15 for multiunits and 0.23 for single units in MT
(differences between single and multiunits were different for
each area, P � 0.001). Despite this heterogeneity, the plots of
difference in normalization index reach a maximum at cortical
distances of 1–2 mm in all three cortical areas and for single
units and multiunits. This size is on the order of the size of a
cortical column (for review see Hubel 1982; Mountcastle
1997). Further experiments, perhaps using imaging techniques,
will be necessary to determine whether the organization is truly
columnar.

For pairs of units separated by �1 mm, the difference in
normalization index was positively correlated with electrode
distance in all three areas (Pearson’s correlation between raw,
unbinned normalization index and raw, unbinned electrode
distance � 0.06, 0.22, and 0.04 for V1, MT, and V4, respec-
tively, all significantly greater than 0, P � 10�4). In addition,
when we performed a permutation test by shuffling the elec-
trode distances (destroying the relationship between difference
in normalization index and electrode distance), the actual mean
difference in normalization indexes was significantly less than
the shuffled mean for pairs separated by �400 �m and greater
than the shuffled mean for pairs separated by 800-1,200 �m in
all three areas (P � 10�3). However, the relationship between
normalization and distance was much stronger in MT than in
the other two areas. Further research will be necessary to
determine whether this difference in our data set represents a
true difference between these three cortical areas or is attrib-
utable to differences in our recording technology between MT
and the other two areas. In V1 and V4, we used chronically
implanted arrays to record from neurons that were all at a
similar depth. In contrast, our electrode penetrations in MT
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were at a variety of angles. In the future, it will be interesting
to find out whether angle of penetration affects the dependence
of normalization difference on distance.

One factor unlikely to account for differences in the apparent
organization for normalization in the three areas is interelec-
trode distance. In our MT recordings, where the interelectrode
distance was small (50 or 60 �m; see MATERIALS AND METHODS),
we occasionally detected the same spike on multiple elec-
trodes, as evidenced by synchronous spikes occurring more
often than expected from recordings of separable, weakly
synchronous spikes. Figure 7C shows the proportion of syn-
chronous spikes as a function of interelectrode distance. The
relationship between synchrony and cortical distance is sub-
stantially different from the relationship between difference in
normalization index and cortical distance. This analysis sug-
gests that the topography we observed cannot be attributed to
recording the same cell on multiple electrodes. Together, our
observations provide evidence in favor of the idea that normal-
ization has a functional organization reminiscent of that of
sensory or motor tuning properties.

Cross-orientation suppression is well-described by a nor-
malization model. In our study, we used cross-orientation
suppression as a proxy for normalization. To quantify the
validity of this assumption, we fit a standard normalization
model to the trial-averaged responses of the units we recorded
(see MATERIALS AND METHODS). Consistent with previous studies
(Carandini and Heeger 2012; Heeger 1992; Said and Heeger
2013), we found that a normalization model accounted for the
majority of the variance in trial-averaged responses in all three
visual areas (85%, 69%, and 82% of the variance in V1, MT,
and V4, respectively). Figure 8 shows the actual (Fig. 8A) and
predicted (Fig. 8B) mean rates for an example V1 unit. Overall,
the normalization indexes predicted by the model were ro-
bustly correlated with the actual normalization indexes (Pear-
son’s correlation coefficient between the predicted and actual

normalization indexes was 0.26 for V1, 0.62 for MT, and 0.46
for V4, all significantly greater than 0, P � 10�70).

Two of the parameters in the model, � and � in Eq. 1, are
associated with different aspects of normalization. The tuned
normalization parameter � affects stimulus interactions in a
contrast-dependent way by scaling the relative contributions of
the preferred and null stimuli to normalization, while the
semisaturation constant � changes the contrast at which the
contrast response curve saturates. The effects of these param-
eters on the predicted contrast response functions of an exam-
ple V1 unit are plotted in Fig. 8, C–F. Although both of these
processes have been associated with normalization (for review
see Carandini and Heeger 2012), in previous studies the tuned
normalization parameter �, but not the semisaturation constant
�, was associated with neuron-to-neuron differences in nor-
malization invoked using combinations of stimuli (Ni et al.
2012; Rust et al. 2006) or with changes in attention (Ni et al.
2012).

As expected given the wide range of normalization indexes
we observed (Fig. 2), the fitted values of � and � differed
substantially from unit to unit. The tuned normalization pa-
rameter � was correlated with the normalization index we used
for all three areas (correlation coefficient between normaliza-
tion index and � was 0.17, 0.19, and 0.19 for V1, MT, and V4,
respectively; all significantly greater than 0, P � 0.01; not
significantly different than each other, P � 0.05), meaning that
a strong normalization index is associated with untuned nor-
malization (which is consistent with the results of Ni et al.
2012). In V1 and MT, the semisaturation parameter � was also
correlated with our normalization index (correlation coefficient
between normalization index and � was 0.05, 0.14, and 0.01
for V1, MT, and V4, respectively; P � 0.01 for V1 and MT but
P � 0.26 for V4). This difference may stem from the fact that
the average value of � was lower for V4 than for V1 or MT.
Therefore, V4 responses saturate at lower contrast on average
(see also Sclar et al. 1990), which may imply that the exact
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contrast saturation point is unrelated to the normalization index
we used that was calculated from responses to high-contrast
stimuli.

Consistent with the robust correlation between our normal-
ization index and the tuned normalization parameter �, we
found that the relationships between � and rSC for pairs of units
in the same or different areas had the same sign as the
relationships between normalization index and rSC depicted in
Fig. 4 (all relationships still significantly different from 0,
including separately for single units and multiunits). Consistent
with the results in Fig. 7, electrode distance was positively
correlated with the difference in � between two units. To-
gether, these observations suggest that cross-orientation sup-
pression is a good proxy for normalization and that the rela-
tionship between rSC or electrode distance and normalization
holds regardless of whether a simple index or a fitted parameter
is used to quantify normalization.

DISCUSSION

Our multineuron, multiarea recordings revealed several new
observations about normalization. First, we demonstrated that

normalization index was similar for pairs of orientations that
elicited large and small differences in firing rate, suggesting
that normalization is a general property of a neuron rather than
a response to specific stimuli. Second, we found that units that
showed strong normalization had qualitatively different pat-
terns of interactions with other neurons within the same corti-
cal area and in different cortical areas. Finally, our data suggest
that cells that are located near each other in the brain exhibited
similar degrees of normalization. Although there were differ-
ences across areas, these observations, along with the distribu-
tions of normalization indexes, were present to varying degrees
in all three cortical areas, implying that the basic characteristics
of normalization are not specific to a particular area.

Our results are therefore consistent with the idea that nor-
malization, and perhaps all processes that divisively scale
neuronal responses, is a general cortical computation (Caran-
dini and Heeger 2012). This means either that cross-orientation
normalization is computed in an early stage of processing (such
as V1) and passed on in an organized way to extrastriate areas
or that it is computed in a similar way in each area. Our results
also suggest that normalization, and likely other processes that
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are well-described by normalization models, is instantiated by
a mechanism that involves spatially specific inputs from other
brain areas. More generally, our results suggest that measuring
the responses of neurons in multiple cortical areas can provide
insights into the neural mechanisms that underlie modulatory
processes like normalization.

Does normalization depend on cortical layer? We showed
that neurons that are located near each other in the brain have
similar normalization indexes (Fig. 7) and that neurons that
exhibit normalization have patterns of spike count correlations
qualitatively different from those that do not (Fig. 4). One
interesting possibility is that neurons in different layers exhibit
different amounts of normalization, perhaps arising from layer-
dependent differences in connectivity that might in turn give
rise to different patterns of spike count correlations.

Using our recording methods, it is difficult to determine
which cortical layer we are recording from. However, we have
two indirect pieces of evidence that our results do not arise
from a systematic relationship between cortical layer and
normalization. First, during individual recording sessions we
often see a range of normalization indexes that change non-
monotonically across each chronically implanted array. Be-
cause the electrodes on the arrays are all the same length (1
mm), the recorded neurons are likely all in the same layer (or
at least layer should vary smoothly and slowly across the
array). The observation that normalization index both increases
and decreases across the array suggests that our topography
results are not solely driven by differences across cortical
layers. Second, a recent study showed that the spike count
correlations do not vary substantially across layers in area V2
(Smith et al. 2013), leading the authors to hypothesize that
spike count correlations arise from cortico-cortico interactions
that should be constant throughout extrastriate cortex. Al-
though the layer dependence of rSC has not been measured in
MT and V4, this hypothesis suggests that the dependence of
rSC on normalization strength did not arise from differences in
cortical layer. However, investigating the way that normaliza-
tion and other modulatory influences depend on cortical layer
will be an interesting avenue for further study.

Opposite patterns of correlations within and across cortical
areas: a general feature of cortical circuits? We showed that
there is an opposite relationship between normalization and
spike count correlations within and across cortical areas (Fig.
4). Neurons that show strong normalization typically had lower
correlations with other neurons that exhibited similarly strong
normalization within the same area (Fig. 4, A–C) and higher
correlations with neurons in other cortical areas that also
exhibited strong normalization (Fig. 4, D–F) compared with
pairs of neurons that exhibit less normalization.

This result bears some resemblance to recent work showing
how other sensory and cognitive processes that divisively scale
neuronal responses affect spike count correlations. A variety of
modulatory influences including stimulus contrast (Kohn and
Smith 2005; Snyder et al. 2014), learning or experience
(Ahissar et al. 1992; Gu et al. 2011; Gutnisky and Dragoi 2008;
Jeanne et al. 2013), global cognitive factors (Ruff and Cohen
2014a), and visual attention (Cohen and Maunsell 2009, 2011;
Gregoriou et al. 2014; Herrero et al. 2013; Mitchell et al. 2009;
Ruff and Cohen 2014b; Zénon and Krauzlis 2012) reduce spike
count correlations between neurons in the same cortical area.
In addition, we recently showed that attention has the opposite

effect on correlations between cortical areas: shifting attention
toward the joint receptive fields of a pair of V1 and MT
neurons increases the spike count correlation (Ruff and Cohen
2016a,b).

Modulatory influences like attention have been hypothesized
to utilize the mechanisms underlying normalization (Boynton
2009; Lee and Maunsell 2009; Ni et al. 2012; Reynolds and
Heeger 2009), and neurons in MT that show strong normal-
ization have stronger attentional modulation of their mean
firing rate than those that do not normalize (Lee and Maunsell
2009; Ni et al. 2012; but see Sanayei et al. 2015). Furthermore,
during an attention task with a single stimulus in their receptive
field, neurons that showed the greatest attention-related rate
modulation also show the biggest attention-related decreases in
rSC with similarly tuned neurons in the same cortical area
(Cohen and Maunsell 2009, 2011).

A recent study measured the relationship between the vari-
ability of individual neurons and the variability of the average
response of simultaneously recorded neurons in the same
cortical area (termed population coupling; Okun et al. 2015).
The authors found that neurons with strong population cou-
pling had stronger average pairwise spike count correlations
with other neurons in the same cortical area. In a separate set
of experiments, the authors used in vivo two-photon imaging to
calculate population coupling followed by in vivo whole cell
recordings. They found that neurons with strong population
coupling had a higher probability of receiving synaptic input
from their neighbors. Broadly, this result is consistent with the
idea that spike count correlations can be considered a proxy for
synaptic inputs. Extrapolating this result to our experiment
suggests that neurons that exhibit weak normalization, which
had higher spike count correlations with other neurons in the
same cortical area, also likely receive more synaptic inputs
from neighboring cells in the same area than cells that exhibit
strong normalization. As multineuron and multiarea recordings
become more common, it will be interesting to see whether the
opposite patterns of interactions between neurons within and
across areas we observed are a general feature of cortical
circuits.

Constraints on the neuronal mechanisms underlying
normalization. All current models of normalization (including
the one we used here) focus on fitting the way that the
trial-averaged responses of neurons depend on stimulus and
task conditions. Because no current models incorporate re-
sponse variability or cortical organization, the relationships
between normalization and spike count correlation or cortical
distance that we observed have not been predicted.

Our hope is that the patterns of interneuronal correlations
and the topography we observed provide insight into the
neuronal mechanisms underlying normalization. Our results
suggest that normalization arises from patterns of inputs that
are spatially segregated and that span cortical areas. Although
the relationship between spike count correlations and connec-
tivity is in its early stages of exploration (Hofer et al. 2011;
Okun et al. 2015), one possibility is that the cells that show
strong normalization have a higher proportion of cross-area
inputs than within-area inputs. It will be exciting in the future
to try to map the functional properties we observed onto
anatomical connectivity.

One advantage of using normalization as a model system to
study the neuronal mechanisms underlying modulatory factors
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(as opposed to using a cognitive factor like attention) is that
measuring normalization does not require behavioral training.
In animals like mice training spatial attention tasks might be
prohibitively difficult, but it might be possible to use genetic
techniques to learn more about the circuit-level mechanisms
underlying normalization.

The body of work showing similarities in the way that
different cognitive factors affect populations of neurons
(Carandini and Heeger 2012; Ruff and Cohen 2014a) suggests
that what we learn from studying normalization will be appli-
cable to understanding the mechanisms underlying a wide
variety of sensory, cognitive, and motor processes that scale
neuronal responses. Our results imply that recording from
groups of neurons in multiple cortical areas and also exploring
the differences between the tuning and modulatory properties
of neurons within a population can be powerful ways to gain
insight into neuronal mechanisms.
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